Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgvol0 Structured version   Visualization version   GIF version

Theorem itgvol0 46090
Description: If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgvol0.1 (𝜑𝐴 ⊆ ℝ)
itgvol0.2 (𝜑 → (vol*‘𝐴) = 0)
itgvol0.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
itgvol0 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ∧ ∫𝐴𝐵 d𝑥 = 0))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgvol0
StepHypRef Expression
1 mpt0 6628 . . . 4 (𝑥 ∈ ∅ ↦ 𝐵) = ∅
2 iblempty 46087 . . . 4 ∅ ∈ 𝐿1
31, 2eqeltri 2829 . . 3 (𝑥 ∈ ∅ ↦ 𝐵) ∈ 𝐿1
4 0ss 4349 . . . . . 6 ∅ ⊆ 𝐴
54a1i 11 . . . . 5 (𝜑 → ∅ ⊆ 𝐴)
6 itgvol0.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 difssd 4086 . . . . . 6 (𝜑 → (𝐴 ∖ ∅) ⊆ 𝐴)
8 itgvol0.2 . . . . . 6 (𝜑 → (vol*‘𝐴) = 0)
9 ovolssnul 25416 . . . . . 6 (((𝐴 ∖ ∅) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐴 ∖ ∅)) = 0)
107, 6, 8, 9syl3anc 1373 . . . . 5 (𝜑 → (vol*‘(𝐴 ∖ ∅)) = 0)
11 itgvol0.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
125, 6, 10, 11itgss3 25744 . . . 4 (𝜑 → (((𝑥 ∈ ∅ ↦ 𝐵) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1) ∧ ∫∅𝐵 d𝑥 = ∫𝐴𝐵 d𝑥))
1312simpld 494 . . 3 (𝜑 → ((𝑥 ∈ ∅ ↦ 𝐵) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1))
143, 13mpbii 233 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
1512simprd 495 . . 3 (𝜑 → ∫∅𝐵 d𝑥 = ∫𝐴𝐵 d𝑥)
16 itg0 25709 . . 3 ∫∅𝐵 d𝑥 = 0
1715, 16eqtr3di 2783 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = 0)
1814, 17jca 511 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ∧ ∫𝐴𝐵 d𝑥 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  wss 3898  c0 4282  cmpt 5174  cfv 6486  cc 11011  cr 11012  0cc0 11013  vol*covol 25391  𝐿1cibl 25546  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-rest 17328  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-cmp 23303  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-ibl 25551  df-itg 25552  df-0p 25599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator