![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprd0 | Structured version Visualization version GIF version |
Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd0.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dprd0 | ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5312 | . . 3 ⊢ ∅ ∈ V | |
2 | dprd0.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 2 | dprdz 20030 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V) → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
4 | 1, 3 | mpan2 689 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
5 | mpt0 6703 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ { 0 }) = ∅ | |
6 | 5 | breq2i 5161 | . . 3 ⊢ (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ↔ 𝐺dom DProd ∅) |
7 | 5 | oveq2i 7435 | . . . 4 ⊢ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = (𝐺 DProd ∅) |
8 | 7 | eqeq1i 2731 | . . 3 ⊢ ((𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 } ↔ (𝐺 DProd ∅) = { 0 }) |
9 | 6, 8 | anbi12i 626 | . 2 ⊢ ((𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 }) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
10 | 4, 9 | sylib 217 | 1 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∅c0 4325 {csn 4633 class class class wbr 5153 ↦ cmpt 5236 dom cdm 5682 ‘cfv 6554 (class class class)co 7424 0gc0g 17454 Grpcgrp 18928 DProd cdprd 19993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-fzo 13682 df-seq 14022 df-hash 14348 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-0g 17456 df-gsum 17457 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-ghm 19207 df-gim 19253 df-cntz 19311 df-oppg 19340 df-cmn 19780 df-dprd 19995 |
This theorem is referenced by: ablfac1eulem 20072 ablfac1eu 20073 pgpfaclem3 20083 |
Copyright terms: Public domain | W3C validator |