![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprd0 | Structured version Visualization version GIF version |
Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd0.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dprd0 | ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
2 | dprd0.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 2 | dprdz 19986 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V) → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
4 | 1, 3 | mpan2 690 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
5 | mpt0 6697 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ { 0 }) = ∅ | |
6 | 5 | breq2i 5156 | . . 3 ⊢ (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ↔ 𝐺dom DProd ∅) |
7 | 5 | oveq2i 7431 | . . . 4 ⊢ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = (𝐺 DProd ∅) |
8 | 7 | eqeq1i 2733 | . . 3 ⊢ ((𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 } ↔ (𝐺 DProd ∅) = { 0 }) |
9 | 6, 8 | anbi12i 627 | . 2 ⊢ ((𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 }) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
10 | 4, 9 | sylib 217 | 1 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∅c0 4323 {csn 4629 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5678 ‘cfv 6548 (class class class)co 7420 0gc0g 17420 Grpcgrp 18889 DProd cdprd 19949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-0g 17422 df-gsum 17423 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-ghm 19167 df-gim 19212 df-cntz 19267 df-oppg 19296 df-cmn 19736 df-dprd 19951 |
This theorem is referenced by: ablfac1eulem 20028 ablfac1eu 20029 pgpfaclem3 20039 |
Copyright terms: Public domain | W3C validator |