MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div0d Structured version   Visualization version   GIF version

Theorem div0d 11750
Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
reccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
div0d (𝜑 → (0 / 𝐴) = 0)

Proof of Theorem div0d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 reccld.2 . 2 (𝜑𝐴 ≠ 0)
3 div0 11663 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0)
41, 2, 3syl2anc 584 1 (𝜑 → (0 / 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by:  mul2lt0rlt0  12832  bcval5  14032  ef0lem  15788  phiprmpw  16477  pceulem  16546  pcqmul  16554  pcqcl  16557  pcaddlem  16589  pcadd  16590  prmreclem4  16620  nmoleub2lem2  24279  mbfi1fseqlem3  24882  itgz  24945  ibl0  24951  iblss2  24970  itgss  24976  dvconst  25081  dvcobr  25110  plyeq0lem  25371  elqaalem3  25481  aareccl  25486  logb1  25919  birthdaylem3  26103  basellem4  26233  logexprlim  26373  chpo1ubb  26629  rpvmasumlem  26635  cndprobnul  32404  cvmliftlem7  33253  cvmliftlem10  33256  cvmliftlem13  33258  faclim  33712  poimirlem29  35806  poimirlem31  35808  areacirclem4  35868  pellexlem6  40656  reglog1  40718  stoweidlem36  43577  fourierdlem30  43678  fourierdlem103  43750  fourierdlem104  43751  sqwvfoura  43769  sqwvfourb  43770  elaa2lem  43774  etransclem24  43799
  Copyright terms: Public domain W3C validator