MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div0d Structured version   Visualization version   GIF version

Theorem div0d 11917
Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
reccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
div0d (𝜑 → (0 / 𝐴) = 0)

Proof of Theorem div0d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 reccld.2 . 2 (𝜑𝐴 ≠ 0)
3 div0 11830 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0)
41, 2, 3syl2anc 584 1 (𝜑 → (0 / 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by:  mul2lt0rlt0  13015  bcval5  14243  ef0lem  16003  phiprmpw  16705  pceulem  16775  pcqmul  16783  pcqcl  16786  pcaddlem  16818  pcadd  16819  prmreclem4  16849  nmoleub2lem2  25032  mbfi1fseqlem3  25634  itgz  25698  ibl0  25704  iblss2  25723  itgss  25729  dvconst  25834  dvcobr  25865  dvcobrOLD  25866  plyeq0lem  26131  elqaalem3  26245  aareccl  26250  logb1  26695  birthdaylem3  26879  basellem4  27010  logexprlim  27152  chpo1ubb  27408  rpvmasumlem  27414  constrrecl  33735  cos9thpiminplylem3  33750  cndprobnul  34404  cvmliftlem7  35263  cvmliftlem10  35266  cvmliftlem13  35268  faclim  35718  poimirlem29  37628  poimirlem31  37630  areacirclem4  37690  pellexlem6  42807  reglog1  42869  stoweidlem36  46018  fourierdlem30  46119  fourierdlem103  46191  fourierdlem104  46192  sqwvfoura  46210  sqwvfourb  46211  elaa2lem  46215  etransclem24  46240
  Copyright terms: Public domain W3C validator