| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > div0d | Structured version Visualization version GIF version | ||
| Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| reccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| div0d | ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | reccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | div0 11870 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 |
| This theorem is referenced by: mul2lt0rlt0 13055 bcval5 14283 ef0lem 16044 phiprmpw 16746 pceulem 16816 pcqmul 16824 pcqcl 16827 pcaddlem 16859 pcadd 16860 prmreclem4 16890 nmoleub2lem2 25016 mbfi1fseqlem3 25618 itgz 25682 ibl0 25688 iblss2 25707 itgss 25713 dvconst 25818 dvcobr 25849 dvcobrOLD 25850 plyeq0lem 26115 elqaalem3 26229 aareccl 26234 logb1 26679 birthdaylem3 26863 basellem4 26994 logexprlim 27136 chpo1ubb 27392 rpvmasumlem 27398 constrrecl 33759 cos9thpiminplylem3 33774 cndprobnul 34428 cvmliftlem7 35278 cvmliftlem10 35281 cvmliftlem13 35283 faclim 35733 poimirlem29 37643 poimirlem31 37645 areacirclem4 37705 pellexlem6 42822 reglog1 42884 stoweidlem36 46034 fourierdlem30 46135 fourierdlem103 46207 fourierdlem104 46208 sqwvfoura 46226 sqwvfourb 46227 elaa2lem 46231 etransclem24 46256 |
| Copyright terms: Public domain | W3C validator |