| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > div0d | Structured version Visualization version GIF version | ||
| Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| reccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| div0d | ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | reccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | div0 11877 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: mul2lt0rlt0 13062 bcval5 14290 ef0lem 16051 phiprmpw 16753 pceulem 16823 pcqmul 16831 pcqcl 16834 pcaddlem 16866 pcadd 16867 prmreclem4 16897 nmoleub2lem2 25023 mbfi1fseqlem3 25625 itgz 25689 ibl0 25695 iblss2 25714 itgss 25720 dvconst 25825 dvcobr 25856 dvcobrOLD 25857 plyeq0lem 26122 elqaalem3 26236 aareccl 26241 logb1 26686 birthdaylem3 26870 basellem4 27001 logexprlim 27143 chpo1ubb 27399 rpvmasumlem 27405 constrrecl 33766 cos9thpiminplylem3 33781 cndprobnul 34435 cvmliftlem7 35285 cvmliftlem10 35288 cvmliftlem13 35290 faclim 35740 poimirlem29 37650 poimirlem31 37652 areacirclem4 37712 pellexlem6 42829 reglog1 42891 stoweidlem36 46041 fourierdlem30 46142 fourierdlem103 46214 fourierdlem104 46215 sqwvfoura 46233 sqwvfourb 46234 elaa2lem 46238 etransclem24 46263 |
| Copyright terms: Public domain | W3C validator |