| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > div0d | Structured version Visualization version GIF version | ||
| Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| reccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| div0d | ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | reccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | div0 11816 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 / 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 / cdiv 11781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 |
| This theorem is referenced by: mul2lt0rlt0 12996 bcval5 14227 ef0lem 15987 phiprmpw 16689 pceulem 16759 pcqmul 16767 pcqcl 16770 pcaddlem 16802 pcadd 16803 prmreclem4 16833 nmoleub2lem2 25044 mbfi1fseqlem3 25646 itgz 25710 ibl0 25716 iblss2 25735 itgss 25741 dvconst 25846 dvcobr 25877 dvcobrOLD 25878 plyeq0lem 26143 elqaalem3 26257 aareccl 26262 logb1 26707 birthdaylem3 26891 basellem4 27022 logexprlim 27164 chpo1ubb 27420 rpvmasumlem 27426 constrrecl 33803 cos9thpiminplylem3 33818 cndprobnul 34471 cvmliftlem7 35356 cvmliftlem10 35359 cvmliftlem13 35361 faclim 35811 poimirlem29 37709 poimirlem31 37711 areacirclem4 37771 pellexlem6 42951 reglog1 43013 stoweidlem36 46158 fourierdlem30 46259 fourierdlem103 46331 fourierdlem104 46332 sqwvfoura 46350 sqwvfourb 46351 elaa2lem 46355 etransclem24 46380 |
| Copyright terms: Public domain | W3C validator |