MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div0d Structured version   Visualization version   GIF version

Theorem div0d 11126
Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
reccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
div0d (𝜑 → (0 / 𝐴) = 0)

Proof of Theorem div0d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 reccld.2 . 2 (𝜑𝐴 ≠ 0)
3 div0 11040 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0)
41, 2, 3syl2anc 579 1 (𝜑 → (0 / 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  wne 2999  (class class class)co 6905  cc 10250  0cc0 10252   / cdiv 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010
This theorem is referenced by:  mul2lt0rlt0  12216  bcval5  13398  ef0lem  15181  phiprmpw  15852  pceulem  15921  pcqmul  15929  pcqcl  15932  pcaddlem  15963  pcadd  15964  prmreclem4  15994  nmoleub2lem2  23285  mbfi1fseqlem3  23883  itgz  23946  ibl0  23952  iblss2  23971  itgss  23977  dvconst  24079  dvcobr  24108  plyeq0lem  24365  elqaalem3  24475  aareccl  24480  logb1  24909  birthdaylem3  25093  basellem4  25223  logexprlim  25363  chpo1ubb  25583  rpvmasumlem  25589  cndprobnul  31034  cvmliftlem7  31808  cvmliftlem10  31811  cvmliftlem13  31813  faclim  32163  poimirlem29  33975  poimirlem31  33977  areacirclem4  34039  pellexlem6  38235  reglog1  38297  stoweidlem36  41040  fourierdlem30  41141  fourierdlem103  41213  fourierdlem104  41214  sqwvfoura  41232  sqwvfourb  41233  elaa2lem  41237  etransclem24  41262
  Copyright terms: Public domain W3C validator