![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulneg1i | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1.1 | ⊢ 𝐴 ∈ ℂ |
mulneg.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulneg1i | ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulneg.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulneg1 10759 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | mp2an 684 | 1 ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 (class class class)co 6879 ℂcc 10223 · cmul 10230 -cneg 10558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-ltxr 10369 df-sub 10559 df-neg 10560 |
This theorem is referenced by: recgt0ii 11222 crreczi 13242 sinhval 15219 coshval 15220 dvdslelem 15369 divalglem2 15453 divalglem6 15456 gcdaddmlem 15579 ncvspi 23282 ang180lem2 24891 ang180lem3 24892 1cubrlem 24919 asinsinlem 24969 asinsin 24970 asin1 24972 lgsdir2lem5 25405 nvpi 28046 ipasslem10 28218 normlem3 28493 dvasin 33983 zlmodzxzequap 43082 |
Copyright terms: Public domain | W3C validator |