Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyneg Structured version   Visualization version   GIF version

Theorem rmxyneg 39656
Description: Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain 0 or ; we use consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyneg ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)))

Proof of Theorem rmxyneg
StepHypRef Expression
1 znegcl 11995 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 rmxyval 39651 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁))
31, 2sylan2 595 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁))
4 rmxyval 39651 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
54oveq2d 7146 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (1 / ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (1 / ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
6 rmbaserp 39655 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
76rpcnd 12411 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
87adantr 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
96rpne0d 12414 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
109adantr 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
11 simpr 488 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
128, 10, 11expclzd 13499 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ ℂ)
134, 12eqeltrd 2912 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
14 frmx 39649 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1514fovcl 7253 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0cnd 11935 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
17 rmspecnonsq 39643 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
1817eldifad 3922 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
1918nncnd 11631 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2019adantr 484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2120sqrtcld 14776 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
22 frmy 39650 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2322fovcl 7253 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2423zcnd 12066 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
2524negcld 10961 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -(𝐴 Yrm 𝑁) ∈ ℂ)
2621, 25mulcld 10638 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)) ∈ ℂ)
2716, 26addcld 10637 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ∈ ℂ)
288, 10, 11expne0d 13500 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ≠ 0)
294, 28eqnetrd 3074 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) ≠ 0)
3021, 24mulneg2d 11071 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)) = -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))
3130oveq2d 7146 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) + -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3221, 24mulcld 10638 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
3316, 32negsubd 10980 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3431, 33eqtrd 2856 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3534oveq2d 7146 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
36 subsq 13556 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
3716, 32, 36syl2anc 587 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
3821, 24sqmuld 13506 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2) = (((√‘((𝐴↑2) − 1))↑2) · ((𝐴 Yrm 𝑁)↑2)))
3920sqsqrtd 14778 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
4039oveq1d 7145 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1))↑2) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))
4138, 40eqtrd 2856 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))
4241oveq2d 7146 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))))
43 rmxynorm 39654 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)
4442, 43eqtrd 2856 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = 1)
4535, 37, 443eqtr2d 2862 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)))) = 1)
4613, 27, 29, 45mvllmuld 11449 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = (1 / ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
478, 10, 11expnegd 13501 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁) = (1 / ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
485, 46, 473eqtr4rd 2867 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))))
493, 48eqtrd 2856 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))))
50 rmspecsqrtnq 39642 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
5150adantr 484 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
52 nn0ssq 12334 . . . 4 0 ⊆ ℚ
5314fovcl 7253 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℕ0)
541, 53sylan2 595 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℕ0)
5552, 54sseldi 3941 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℚ)
56 zssq 12333 . . . 4 ℤ ⊆ ℚ
5722fovcl 7253 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
581, 57sylan2 595 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
5956, 58sseldi 3941 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℚ)
6052, 15sseldi 3941 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
6156, 23sseldi 3941 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
62 qnegcl 12343 . . . 4 ((𝐴 Yrm 𝑁) ∈ ℚ → -(𝐴 Yrm 𝑁) ∈ ℚ)
6361, 62syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -(𝐴 Yrm 𝑁) ∈ ℚ)
64 qirropth 39644 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm -𝑁) ∈ ℚ ∧ (𝐴 Yrm -𝑁) ∈ ℚ) ∧ ((𝐴 Xrm 𝑁) ∈ ℚ ∧ -(𝐴 Yrm 𝑁) ∈ ℚ)) → (((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ↔ ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))))
6551, 55, 59, 60, 63, 64syl122anc 1376 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ↔ ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))))
6649, 65mpbid 235 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3007  cdif 3907  cfv 6328  (class class class)co 7130  cc 10512  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519  cmin 10847  -cneg 10848   / cdiv 11274  cn 11615  2c2 11670  0cn0 11875  cz 11959  cuz 12221  cq 12326  cexp 13413  csqrt 14571  NNcsquarenn 39572   Xrm crmx 39636   Yrm crmy 39637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-omul 8082  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-xnn0 11946  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-dvds 15587  df-gcd 15821  df-numer 16052  df-denom 16053  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-limc 24447  df-dv 24448  df-log 25126  df-squarenn 39577  df-pell1qr 39578  df-pell14qr 39579  df-pell1234qr 39580  df-pellfund 39581  df-rmx 39638  df-rmy 39639
This theorem is referenced by:  rmxneg  39660  rmyneg  39664
  Copyright terms: Public domain W3C validator