Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyneg Structured version   Visualization version   GIF version

Theorem rmxyneg 38329
Description: Negation law for X and Y sequences. JonesMatijasevic is inconsistent on whether the X and Y sequences have domain 0 or ; we use consistently to avoid the need for a separate subtraction law. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyneg ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)))

Proof of Theorem rmxyneg
StepHypRef Expression
1 znegcl 11741 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 rmxyval 38324 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁))
31, 2sylan2 588 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁))
4 rmxyval 38324 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
54oveq2d 6922 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (1 / ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))) = (1 / ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
6 rmbaserp 38328 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
76rpcnd 12159 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
87adantr 474 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
96rpne0d 12162 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
109adantr 474 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) ≠ 0)
11 simpr 479 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
128, 10, 11expclzd 13308 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ ℂ)
134, 12eqeltrd 2907 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) ∈ ℂ)
14 frmx 38322 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1514fovcl 7026 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0cnd 11681 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ)
17 rmspecnonsq 38316 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
1817eldifad 3811 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
1918nncnd 11369 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2019adantr 474 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ)
2120sqrtcld 14554 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
22 frmy 38323 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2322fovcl 7026 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2423zcnd 11812 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ)
2524negcld 10701 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -(𝐴 Yrm 𝑁) ∈ ℂ)
2621, 25mulcld 10378 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)) ∈ ℂ)
2716, 26addcld 10377 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ∈ ℂ)
288, 10, 11expne0d 13309 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ≠ 0)
294, 28eqnetrd 3067 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) ≠ 0)
3021, 24mulneg2d 10809 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)) = -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))
3130oveq2d 6922 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) + -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3221, 24mulcld 10378 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
3316, 32negsubd 10720 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + -((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3431, 33eqtrd 2862 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))))
3534oveq2d 6922 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
36 subsq 13267 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
3716, 32, 36syl2anc 581 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) − ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
3821, 24sqmuld 13315 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2) = (((√‘((𝐴↑2) − 1))↑2) · ((𝐴 Yrm 𝑁)↑2)))
3920sqsqrtd 14556 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
4039oveq1d 6921 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1))↑2) · ((𝐴 Yrm 𝑁)↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))
4138, 40eqtrd 2862 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))
4241oveq2d 6922 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))))
43 rmxynorm 38327 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)
4442, 43eqtrd 2862 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑2)) = 1)
4535, 37, 443eqtr2d 2868 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) · ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁)))) = 1)
4613, 27, 29, 45mvllmuld 11184 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) = (1 / ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))))
478, 10, 11expnegd 13310 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁) = (1 / ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
485, 46, 473eqtr4rd 2873 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑-𝑁) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))))
493, 48eqtrd 2862 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))))
50 rmspecsqrtnq 38315 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
5150adantr 474 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
52 nn0ssq 12080 . . . 4 0 ⊆ ℚ
5314fovcl 7026 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℕ0)
541, 53sylan2 588 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℕ0)
5552, 54sseldi 3826 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -𝑁) ∈ ℚ)
56 zssq 12079 . . . 4 ℤ ⊆ ℚ
5722fovcl 7026 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
581, 57sylan2 588 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
5956, 58sseldi 3826 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℚ)
6052, 15sseldi 3826 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℚ)
6156, 23sseldi 3826 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℚ)
62 qnegcl 12089 . . . 4 ((𝐴 Yrm 𝑁) ∈ ℚ → -(𝐴 Yrm 𝑁) ∈ ℚ)
6361, 62syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → -(𝐴 Yrm 𝑁) ∈ ℚ)
64 qirropth 38317 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm -𝑁) ∈ ℚ ∧ (𝐴 Yrm -𝑁) ∈ ℚ) ∧ ((𝐴 Xrm 𝑁) ∈ ℚ ∧ -(𝐴 Yrm 𝑁) ∈ ℚ)) → (((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ↔ ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))))
6551, 55, 59, 60, 63, 64syl122anc 1504 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm -𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm -𝑁))) = ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · -(𝐴 Yrm 𝑁))) ↔ ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))))
6649, 65mpbid 224 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm -𝑁) = (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000  cdif 3796  cfv 6124  (class class class)co 6906  cc 10251  0cc0 10253  1c1 10254   + caddc 10256   · cmul 10258  cmin 10586  -cneg 10587   / cdiv 11010  cn 11351  2c2 11407  0cn0 11619  cz 11705  cuz 11969  cq 12072  cexp 13155  csqrt 14351  NNcsquarenn 38245   Xrm crmx 38309   Yrm crmy 38310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-omul 7832  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-fi 8587  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-xnn0 11692  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-ioo 12468  df-ioc 12469  df-ico 12470  df-icc 12471  df-fz 12621  df-fzo 12762  df-fl 12889  df-mod 12965  df-seq 13097  df-exp 13156  df-fac 13355  df-bc 13384  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171  df-sin 15173  df-cos 15174  df-pi 15176  df-dvds 15359  df-gcd 15591  df-numer 15815  df-denom 15816  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-hom 16330  df-cco 16331  df-rest 16437  df-topn 16438  df-0g 16456  df-gsum 16457  df-topgen 16458  df-pt 16459  df-prds 16462  df-xrs 16516  df-qtop 16521  df-imas 16522  df-xps 16524  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-mulg 17896  df-cntz 18101  df-cmn 18549  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-fbas 20104  df-fg 20105  df-cnfld 20108  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-nei 21274  df-lp 21312  df-perf 21313  df-cn 21403  df-cnp 21404  df-haus 21491  df-tx 21737  df-hmeo 21930  df-fil 22021  df-fm 22113  df-flim 22114  df-flf 22115  df-xms 22496  df-ms 22497  df-tms 22498  df-cncf 23052  df-limc 24030  df-dv 24031  df-log 24703  df-squarenn 38250  df-pell1qr 38251  df-pell14qr 38252  df-pell1234qr 38253  df-pellfund 38254  df-rmx 38311  df-rmy 38312
This theorem is referenced by:  rmxneg  38333  rmyneg  38337
  Copyright terms: Public domain W3C validator