MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgpowd Structured version   Visualization version   GIF version

Theorem itgpowd 26111
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
Hypotheses
Ref Expression
itgpowd.1 (𝜑𝐴 ∈ ℝ)
itgpowd.2 (𝜑𝐵 ∈ ℝ)
itgpowd.3 (𝜑𝐴𝐵)
itgpowd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itgpowd (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem itgpowd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgpowd.4 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 nn0p1nn 12592 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
43nncnd 12309 . 2 (𝜑 → (𝑁 + 1) ∈ ℂ)
5 itgpowd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 itgpowd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
7 iccssre 13489 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 583 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9 ax-resscn 11241 . . . . . 6 ℝ ⊆ ℂ
108, 9sstrdi 4021 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
1110sselda 4008 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
121adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
1311, 12expcld 14196 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝑁) ∈ ℂ)
1410resmptd 6069 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)))
15 expcncf 24972 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
161, 15syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
17 rescncf 24942 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1810, 16, 17sylc 65 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1914, 18eqeltrrd 2845 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
20 cnicciblnc 25898 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
215, 6, 19, 20syl3anc 1371 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
2213, 21itgcl 25839 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 ∈ ℂ)
233nnne0d 12343 . 2 (𝜑 → (𝑁 + 1) ≠ 0)
244, 13, 21itgmulc2 25889 . . 3 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
25 eqidd 2741 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
26 oveq1 7455 . . . . . . . 8 (𝑡 = 𝑥 → (𝑡𝑁) = (𝑥𝑁))
2726oveq2d 7464 . . . . . . 7 (𝑡 = 𝑥 → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
2827adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑡 = 𝑥) → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
29 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
304adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 + 1) ∈ ℂ)
31 ioossicc 13493 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3231a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3332sselda 4008 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3433, 13syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥𝑁) ∈ ℂ)
3530, 34mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
3625, 28, 29, 35fvmptd 7036 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) = ((𝑁 + 1) · (𝑥𝑁)))
3736itgeq2dv 25837 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
38 itgpowd.3 . . . . . 6 (𝜑𝐴𝐵)
39 reelprrecn 11276 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
419a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
4241sselda 4008 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
43 1nn0 12569 . . . . . . . . . . . 12 1 ∈ ℕ0
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
451, 44nn0addcld 12617 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ0)
4645adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℕ0)
4742, 46expcld 14196 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
481nn0cnd 12615 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
4948adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
50 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
5149, 50addcld 11309 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℂ)
521adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℕ0)
5342, 52expcld 14196 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑁) ∈ ℂ)
5451, 53mulcld 11310 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
55 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
5645adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℕ0)
5755, 56expcld 14196 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
5857fmpttd 7149 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ)
59 ssidd 4032 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
604adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℂ)
611adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℂ) → 𝑁 ∈ ℕ0)
6255, 61expcld 14196 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑁) ∈ ℂ)
6360, 62mulcld 11310 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℂ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
6463fmpttd 7149 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ)
65 dvexp 26011 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℕ → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
663, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
67 1cnd 11285 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
6848, 67pncand 11648 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
6968oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡↑((𝑁 + 1) − 1)) = (𝑡𝑁))
7069oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1))) = ((𝑁 + 1) · (𝑡𝑁)))
7170mpteq2dv 5268 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7266, 71eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7372feq1d 6732 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ ↔ (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ))
7464, 73mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ)
7574fdmd 6757 . . . . . . . . . . . 12 (𝜑 → dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = ℂ)
769, 75sseqtrrid 4062 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))
77 dvres3 25968 . . . . . . . . . . 11 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))) → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7840, 58, 59, 76, 77syl22anc 838 . . . . . . . . . 10 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7972reseq1d 6008 . . . . . . . . . 10 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
8078, 79eqtrd 2780 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
81 resmpt 6066 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
829, 81mp1i 13 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
8382oveq2d 7464 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))))
84 resmpt 6066 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
859, 84mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
8680, 83, 853eqtr3d 2788 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
87 eqid 2740 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8887tgioo2 24844 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iccntr 24862 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
905, 6, 89syl2anc 583 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9140, 47, 54, 86, 8, 88, 87, 90dvmptres2 26020 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
92 ioossre 13468 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9392, 9sstri 4018 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 cncfmptc 24957 . . . . . . . . 9 (((𝑁 + 1) ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
964, 94, 59, 95syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
97 resmpt 6066 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
9893, 97mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
99 expcncf 24972 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
1001, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
101 rescncf 24942 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
10294, 100, 101sylc 65 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10398, 102eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10496, 103mulcncf 25499 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10591, 104eqeltrd 2844 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106 ioombl 25619 . . . . . . . . 9 (𝐴(,)𝐵) ∈ dom vol
107106a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
10848adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℂ)
109 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
110108, 109addcld 11309 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
11110sselda 4008 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
1121adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
113111, 112expcld 14196 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑁) ∈ ℂ)
114110, 113mulcld 11310 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
115 cncfmptc 24957 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1164, 10, 59, 115syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11710resmptd 6069 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)))
118 rescncf 24942 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
11910, 100, 118sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
120117, 119eqeltrrd 2845 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
121116, 120mulcncf 25499 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
122 cnicciblnc 25898 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
1235, 6, 121, 122syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12432, 107, 114, 123iblss 25860 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12591, 124eqeltrd 2844 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ 𝐿1)
12610resmptd 6069 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
127 expcncf 24972 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
12845, 127syl 17 . . . . . . . 8 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
129 rescncf 24942 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
13010, 128, 129sylc 65 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
131126, 130eqeltrrd 2845 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1325, 6, 38, 105, 125, 131ftc2 26105 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)))
13391fveq1d 6922 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
134133ralrimivw 3156 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
135 itgeq2 25833 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
136134, 135syl 17 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
137 eqidd 2741 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
138 simpr 484 . . . . . . . 8 ((𝜑𝑡 = 𝐵) → 𝑡 = 𝐵)
139138oveq1d 7463 . . . . . . 7 ((𝜑𝑡 = 𝐵) → (𝑡↑(𝑁 + 1)) = (𝐵↑(𝑁 + 1)))
1405rexrd 11340 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1416rexrd 11340 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
142 ubicc2 13525 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
143140, 141, 38, 142syl3anc 1371 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐵))
1446recnd 11318 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
145144, 45expcld 14196 . . . . . . 7 (𝜑 → (𝐵↑(𝑁 + 1)) ∈ ℂ)
146137, 139, 143, 145fvmptd 7036 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) = (𝐵↑(𝑁 + 1)))
147 simpr 484 . . . . . . . 8 ((𝜑𝑡 = 𝐴) → 𝑡 = 𝐴)
148147oveq1d 7463 . . . . . . 7 ((𝜑𝑡 = 𝐴) → (𝑡↑(𝑁 + 1)) = (𝐴↑(𝑁 + 1)))
149 lbicc2 13524 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150140, 141, 38, 149syl3anc 1371 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
1515recnd 11318 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
152151, 45expcld 14196 . . . . . . 7 (𝜑 → (𝐴↑(𝑁 + 1)) ∈ ℂ)
153137, 148, 150, 152fvmptd 7036 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴) = (𝐴↑(𝑁 + 1)))
154146, 153oveq12d 7466 . . . . 5 (𝜑 → (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
155132, 136, 1543eqtr3d 2788 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1564adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
157156, 13mulcld 11310 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
1585, 6, 157itgioo 25871 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
15937, 155, 1583eqtr3rd 2789 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
16024, 159eqtrd 2780 . 2 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1614, 22, 23, 160mvllmuld 12126 1 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  (,)cioo 13407  [,]cicc 13410  cexp 14112  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  intcnt 23046  cnccncf 24921  volcvol 25517  𝐿1cibl 25671  citg 25672   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922
This theorem is referenced by:  lcmineqlem3  41988  areaquad  43177
  Copyright terms: Public domain W3C validator