MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgpowd Structured version   Visualization version   GIF version

Theorem itgpowd 24742
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
Hypotheses
Ref Expression
itgpowd.1 (𝜑𝐴 ∈ ℝ)
itgpowd.2 (𝜑𝐵 ∈ ℝ)
itgpowd.3 (𝜑𝐴𝐵)
itgpowd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itgpowd (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem itgpowd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgpowd.4 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 nn0p1nn 11966 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
43nncnd 11683 . 2 (𝜑 → (𝑁 + 1) ∈ ℂ)
5 itgpowd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 itgpowd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
7 iccssre 12854 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 588 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9 ax-resscn 10625 . . . . . 6 ℝ ⊆ ℂ
108, 9sstrdi 3905 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
1110sselda 3893 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
121adantr 485 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
1311, 12expcld 13553 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝑁) ∈ ℂ)
1410resmptd 5881 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)))
15 expcncf 23620 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
161, 15syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
17 rescncf 23591 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1810, 16, 17sylc 65 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1914, 18eqeltrrd 2854 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
20 cnicciblnc 24535 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
215, 6, 19, 20syl3anc 1369 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
2213, 21itgcl 24476 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 ∈ ℂ)
233nnne0d 11717 . 2 (𝜑 → (𝑁 + 1) ≠ 0)
244, 13, 21itgmulc2 24526 . . 3 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
25 eqidd 2760 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
26 oveq1 7158 . . . . . . . 8 (𝑡 = 𝑥 → (𝑡𝑁) = (𝑥𝑁))
2726oveq2d 7167 . . . . . . 7 (𝑡 = 𝑥 → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
2827adantl 486 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑡 = 𝑥) → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
29 simpr 489 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
304adantr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 + 1) ∈ ℂ)
31 ioossicc 12858 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3231a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3332sselda 3893 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3433, 13syldan 595 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥𝑁) ∈ ℂ)
3530, 34mulcld 10692 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
3625, 28, 29, 35fvmptd 6767 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) = ((𝑁 + 1) · (𝑥𝑁)))
3736itgeq2dv 24474 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
38 itgpowd.3 . . . . . 6 (𝜑𝐴𝐵)
39 reelprrecn 10660 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
419a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
4241sselda 3893 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
43 1nn0 11943 . . . . . . . . . . . 12 1 ∈ ℕ0
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
451, 44nn0addcld 11991 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ0)
4645adantr 485 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℕ0)
4742, 46expcld 13553 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
481nn0cnd 11989 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
4948adantr 485 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
50 1cnd 10667 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
5149, 50addcld 10691 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℂ)
521adantr 485 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℕ0)
5342, 52expcld 13553 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑁) ∈ ℂ)
5451, 53mulcld 10692 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
55 simpr 489 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
5645adantr 485 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℕ0)
5755, 56expcld 13553 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
5857fmpttd 6871 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ)
59 ssidd 3916 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
604adantr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℂ)
611adantr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℂ) → 𝑁 ∈ ℕ0)
6255, 61expcld 13553 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑁) ∈ ℂ)
6360, 62mulcld 10692 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℂ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
6463fmpttd 6871 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ)
65 dvexp 24645 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℕ → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
663, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
67 1cnd 10667 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
6848, 67pncand 11029 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
6968oveq2d 7167 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡↑((𝑁 + 1) − 1)) = (𝑡𝑁))
7069oveq2d 7167 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1))) = ((𝑁 + 1) · (𝑡𝑁)))
7170mpteq2dv 5129 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7266, 71eqtrd 2794 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7372feq1d 6484 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ ↔ (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ))
7464, 73mpbird 260 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ)
7574fdmd 6509 . . . . . . . . . . . 12 (𝜑 → dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = ℂ)
769, 75sseqtrrid 3946 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))
77 dvres3 24605 . . . . . . . . . . 11 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))) → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7840, 58, 59, 76, 77syl22anc 838 . . . . . . . . . 10 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7972reseq1d 5823 . . . . . . . . . 10 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
8078, 79eqtrd 2794 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
81 resmpt 5878 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
829, 81mp1i 13 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
8382oveq2d 7167 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))))
84 resmpt 5878 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
859, 84mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
8680, 83, 853eqtr3d 2802 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
87 eqid 2759 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8887tgioo2 23497 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iccntr 23515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
905, 6, 89syl2anc 588 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9140, 47, 54, 86, 8, 88, 87, 90dvmptres2 24654 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
92 ioossre 12833 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9392, 9sstri 3902 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 cncfmptc 23606 . . . . . . . . 9 (((𝑁 + 1) ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
964, 94, 59, 95syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
97 resmpt 5878 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
9893, 97mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
99 expcncf 23620 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
1001, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
101 rescncf 23591 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
10294, 100, 101sylc 65 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10398, 102eqeltrrd 2854 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10496, 103mulcncf 24139 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10591, 104eqeltrd 2853 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106 ioombl 24258 . . . . . . . . 9 (𝐴(,)𝐵) ∈ dom vol
107106a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
10848adantr 485 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℂ)
109 1cnd 10667 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
110108, 109addcld 10691 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
11110sselda 3893 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
1121adantr 485 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
113111, 112expcld 13553 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑁) ∈ ℂ)
114110, 113mulcld 10692 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
115 cncfmptc 23606 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1164, 10, 59, 115syl3anc 1369 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11710resmptd 5881 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)))
118 rescncf 23591 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
11910, 100, 118sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
120117, 119eqeltrrd 2854 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
121116, 120mulcncf 24139 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
122 cnicciblnc 24535 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
1235, 6, 121, 122syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12432, 107, 114, 123iblss 24497 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12591, 124eqeltrd 2853 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ 𝐿1)
12610resmptd 5881 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
127 expcncf 23620 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
12845, 127syl 17 . . . . . . . 8 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
129 rescncf 23591 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
13010, 128, 129sylc 65 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
131126, 130eqeltrrd 2854 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1325, 6, 38, 105, 125, 131ftc2 24736 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)))
13391fveq1d 6661 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
134133ralrimivw 3115 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
135 itgeq2 24470 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
136134, 135syl 17 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
137 eqidd 2760 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
138 simpr 489 . . . . . . . 8 ((𝜑𝑡 = 𝐵) → 𝑡 = 𝐵)
139138oveq1d 7166 . . . . . . 7 ((𝜑𝑡 = 𝐵) → (𝑡↑(𝑁 + 1)) = (𝐵↑(𝑁 + 1)))
1405rexrd 10722 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1416rexrd 10722 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
142 ubicc2 12890 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
143140, 141, 38, 142syl3anc 1369 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐵))
1446recnd 10700 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
145144, 45expcld 13553 . . . . . . 7 (𝜑 → (𝐵↑(𝑁 + 1)) ∈ ℂ)
146137, 139, 143, 145fvmptd 6767 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) = (𝐵↑(𝑁 + 1)))
147 simpr 489 . . . . . . . 8 ((𝜑𝑡 = 𝐴) → 𝑡 = 𝐴)
148147oveq1d 7166 . . . . . . 7 ((𝜑𝑡 = 𝐴) → (𝑡↑(𝑁 + 1)) = (𝐴↑(𝑁 + 1)))
149 lbicc2 12889 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150140, 141, 38, 149syl3anc 1369 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
1515recnd 10700 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
152151, 45expcld 13553 . . . . . . 7 (𝜑 → (𝐴↑(𝑁 + 1)) ∈ ℂ)
153137, 148, 150, 152fvmptd 6767 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴) = (𝐴↑(𝑁 + 1)))
154146, 153oveq12d 7169 . . . . 5 (𝜑 → (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
155132, 136, 1543eqtr3d 2802 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1564adantr 485 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
157156, 13mulcld 10692 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
1585, 6, 157itgioo 24508 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
15937, 155, 1583eqtr3rd 2803 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
16024, 159eqtrd 2794 . 2 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1614, 22, 23, 160mvllmuld 11503 1 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  wss 3859  {cpr 4525   class class class wbr 5033  cmpt 5113  dom cdm 5525  ran crn 5526  cres 5527  wf 6332  cfv 6336  (class class class)co 7151  cc 10566  cr 10567  1c1 10569   + caddc 10571   · cmul 10573  *cxr 10705  cle 10707  cmin 10901   / cdiv 11328  cn 11667  0cn0 11927  (,)cioo 12772  [,]cicc 12775  cexp 13472  TopOpenctopn 16746  topGenctg 16762  fldccnfld 20159  intcnt 21710  cnccncf 23570  volcvol 24156  𝐿1cibl 24310  citg 24311   D cdv 24555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cc 9888  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-symdif 4148  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-ofr 7407  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-omul 8118  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-dju 9356  df-card 9394  df-acn 9397  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ioc 12777  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-mod 13280  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-mulg 18285  df-cntz 18507  df-cmn 18968  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-lp 21829  df-perf 21830  df-cn 21920  df-cnp 21921  df-haus 22008  df-cmp 22080  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cncf 23572  df-ovol 24157  df-vol 24158  df-mbf 24312  df-itg1 24313  df-itg2 24314  df-ibl 24315  df-itg 24316  df-0p 24363  df-limc 24558  df-dv 24559
This theorem is referenced by:  lcmineqlem3  39591  areaquad  40532
  Copyright terms: Public domain W3C validator