Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgpowd Structured version   Visualization version   GIF version

Theorem itgpowd 38326
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
Hypotheses
Ref Expression
itgpowd.1 (𝜑𝐴 ∈ ℝ)
itgpowd.2 (𝜑𝐵 ∈ ℝ)
itgpowd.3 (𝜑𝐴𝐵)
itgpowd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itgpowd (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem itgpowd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgpowd.4 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 nn0p1nn 11538 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
43nncnd 11241 . 2 (𝜑 → (𝑁 + 1) ∈ ℂ)
5 itgpowd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 itgpowd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
7 iccssre 12459 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 573 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9 ax-resscn 10198 . . . . . 6 ℝ ⊆ ℂ
108, 9syl6ss 3764 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
1110sselda 3752 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
121adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
1311, 12expcld 13214 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝑁) ∈ ℂ)
1410resmptd 5592 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)))
15 expcncf 22944 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
161, 15syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
17 rescncf 22919 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1810, 16, 17sylc 65 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1914, 18eqeltrrd 2851 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
20 cniccibl 23826 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
215, 6, 19, 20syl3anc 1476 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
2213, 21itgcl 23769 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 ∈ ℂ)
233nnne0d 11270 . 2 (𝜑 → (𝑁 + 1) ≠ 0)
244, 13, 21itgmulc2 23819 . . 3 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
25 eqidd 2772 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
26 oveq1 6802 . . . . . . . 8 (𝑡 = 𝑥 → (𝑡𝑁) = (𝑥𝑁))
2726oveq2d 6811 . . . . . . 7 (𝑡 = 𝑥 → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
2827adantl 467 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑡 = 𝑥) → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
29 simpr 471 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
304adantr 466 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 + 1) ∈ ℂ)
31 ioossicc 12463 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3231a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3332sselda 3752 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3433, 13syldan 579 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥𝑁) ∈ ℂ)
3530, 34mulcld 10265 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
3625, 28, 29, 35fvmptd 6432 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) = ((𝑁 + 1) · (𝑥𝑁)))
3736itgeq2dv 23767 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
38 itgpowd.3 . . . . . 6 (𝜑𝐴𝐵)
39 reelprrecn 10233 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
419a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
4241sselda 3752 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
43 1nn0 11514 . . . . . . . . . . . 12 1 ∈ ℕ0
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
451, 44nn0addcld 11561 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ0)
4645adantr 466 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℕ0)
4742, 46expcld 13214 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
481nn0cnd 11559 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
4948adantr 466 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
50 1cnd 10261 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
5149, 50addcld 10264 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℂ)
521adantr 466 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℕ0)
5342, 52expcld 13214 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑁) ∈ ℂ)
5451, 53mulcld 10265 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
55 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
5645adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℕ0)
5755, 56expcld 13214 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
58 eqid 2771 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))
5957, 58fmptd 6529 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ)
60 ssid 3773 . . . . . . . . . . . 12 ℂ ⊆ ℂ
6160a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
624adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℂ)
631adantr 466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℂ) → 𝑁 ∈ ℕ0)
6455, 63expcld 13214 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑁) ∈ ℂ)
6562, 64mulcld 10265 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℂ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
66 eqid 2771 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁)))
6765, 66fmptd 6529 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ)
68 dvexp 23935 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℕ → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
693, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
70 1cnd 10261 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
7148, 70pncand 10598 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
7271oveq2d 6811 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡↑((𝑁 + 1) − 1)) = (𝑡𝑁))
7372oveq2d 6811 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1))) = ((𝑁 + 1) · (𝑡𝑁)))
7473mpteq2dv 4880 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7569, 74eqtrd 2805 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7675feq1d 6169 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ ↔ (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ))
7767, 76mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ)
7877fdmd 6193 . . . . . . . . . . . 12 (𝜑 → dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = ℂ)
799, 78syl5sseqr 3803 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))
80 dvres3 23896 . . . . . . . . . . 11 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))) → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
8140, 59, 61, 79, 80syl22anc 1477 . . . . . . . . . 10 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
8275reseq1d 5532 . . . . . . . . . 10 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
8381, 82eqtrd 2805 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
84 resmpt 5589 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
859, 84mp1i 13 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
8685oveq2d 6811 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))))
87 resmpt 5589 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
889, 87mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
8983, 86, 883eqtr3d 2813 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
90 eqid 2771 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9190tgioo2 22825 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
92 iccntr 22843 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
935, 6, 92syl2anc 573 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9440, 47, 54, 89, 8, 91, 90, 93dvmptres2 23944 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
95 ioossre 12439 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9695, 9sstri 3761 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
9796a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
98 cncfmptc 22933 . . . . . . . . 9 (((𝑁 + 1) ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
994, 97, 61, 98syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
100 resmpt 5589 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
10196, 100mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
102 expcncf 22944 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
1031, 102syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
104 rescncf 22919 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
10597, 103, 104sylc 65 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106101, 105eqeltrrd 2851 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10799, 106mulcncf 23433 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10894, 107eqeltrd 2850 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
109 ioombl 23552 . . . . . . . . 9 (𝐴(,)𝐵) ∈ dom vol
110109a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
11148adantr 466 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℂ)
112 1cnd 10261 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
113111, 112addcld 10264 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
11410sselda 3752 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
1151adantr 466 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
116114, 115expcld 13214 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑁) ∈ ℂ)
117113, 116mulcld 10265 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
118 cncfmptc 22933 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1194, 10, 61, 118syl3anc 1476 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
12010resmptd 5592 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)))
121 rescncf 22919 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
12210, 103, 121sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
123120, 122eqeltrrd 2851 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
124119, 123mulcncf 23433 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
125 cniccibl 23826 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
1265, 6, 124, 125syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12732, 110, 117, 126iblss 23790 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12894, 127eqeltrd 2850 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ 𝐿1)
12910resmptd 5592 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
130 expcncf 22944 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
13145, 130syl 17 . . . . . . . 8 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
132 rescncf 22919 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
13310, 131, 132sylc 65 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
134129, 133eqeltrrd 2851 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1355, 6, 38, 108, 128, 134ftc2 24026 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)))
13694fveq1d 6335 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
137136ralrimivw 3116 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
138 itgeq2 23763 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
139137, 138syl 17 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
140 eqidd 2772 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
141 simpr 471 . . . . . . . 8 ((𝜑𝑡 = 𝐵) → 𝑡 = 𝐵)
142141oveq1d 6810 . . . . . . 7 ((𝜑𝑡 = 𝐵) → (𝑡↑(𝑁 + 1)) = (𝐵↑(𝑁 + 1)))
1435rexrd 10294 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1446rexrd 10294 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
145 ubicc2 12495 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
146143, 144, 38, 145syl3anc 1476 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐵))
1476recnd 10273 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
148147, 45expcld 13214 . . . . . . 7 (𝜑 → (𝐵↑(𝑁 + 1)) ∈ ℂ)
149140, 142, 146, 148fvmptd 6432 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) = (𝐵↑(𝑁 + 1)))
150 simpr 471 . . . . . . . 8 ((𝜑𝑡 = 𝐴) → 𝑡 = 𝐴)
151150oveq1d 6810 . . . . . . 7 ((𝜑𝑡 = 𝐴) → (𝑡↑(𝑁 + 1)) = (𝐴↑(𝑁 + 1)))
152 lbicc2 12494 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
153143, 144, 38, 152syl3anc 1476 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
1545recnd 10273 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
155154, 45expcld 13214 . . . . . . 7 (𝜑 → (𝐴↑(𝑁 + 1)) ∈ ℂ)
156140, 151, 153, 155fvmptd 6432 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴) = (𝐴↑(𝑁 + 1)))
157149, 156oveq12d 6813 . . . . 5 (𝜑 → (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
158135, 139, 1573eqtr3d 2813 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1594adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
160159, 13mulcld 10265 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
1615, 6, 160itgioo 23801 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
16237, 158, 1613eqtr3rd 2814 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
16324, 162eqtrd 2805 . 2 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1644, 22, 23, 163mvllmuld 11062 1 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723  {cpr 4319   class class class wbr 4787  cmpt 4864  dom cdm 5250  ran crn 5251  cres 5252  wf 6026  cfv 6030  (class class class)co 6795  cc 10139  cr 10140  1c1 10142   + caddc 10144   · cmul 10146  *cxr 10278  cle 10280  cmin 10471   / cdiv 10889  cn 11225  0cn0 11498  (,)cioo 12379  [,]cicc 12382  cexp 13066  TopOpenctopn 16289  topGenctg 16305  fldccnfld 19960  intcnt 21041  cnccncf 22898  volcvol 23450  𝐿1cibl 23604  citg 23605   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cc 9462  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-ofr 7048  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-omul 7721  df-er 7899  df-map 8014  df-pm 8015  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-acn 8971  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-cmp 21410  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608  df-ibl 23609  df-itg 23610  df-0p 23656  df-limc 23849  df-dv 23850
This theorem is referenced by:  areaquad  38328
  Copyright terms: Public domain W3C validator