MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgpowd Structured version   Visualization version   GIF version

Theorem itgpowd 26105
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
Hypotheses
Ref Expression
itgpowd.1 (𝜑𝐴 ∈ ℝ)
itgpowd.2 (𝜑𝐵 ∈ ℝ)
itgpowd.3 (𝜑𝐴𝐵)
itgpowd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itgpowd (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem itgpowd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgpowd.4 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 nn0p1nn 12562 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
43nncnd 12279 . 2 (𝜑 → (𝑁 + 1) ∈ ℂ)
5 itgpowd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 itgpowd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
7 iccssre 13465 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9 ax-resscn 11209 . . . . . 6 ℝ ⊆ ℂ
108, 9sstrdi 4007 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
1110sselda 3994 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
121adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
1311, 12expcld 14182 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝑁) ∈ ℂ)
1410resmptd 6059 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)))
15 expcncf 24966 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
161, 15syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
17 rescncf 24936 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1810, 16, 17sylc 65 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1914, 18eqeltrrd 2839 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
20 cnicciblnc 25892 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
215, 6, 19, 20syl3anc 1370 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
2213, 21itgcl 25833 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 ∈ ℂ)
233nnne0d 12313 . 2 (𝜑 → (𝑁 + 1) ≠ 0)
244, 13, 21itgmulc2 25883 . . 3 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
25 eqidd 2735 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
26 oveq1 7437 . . . . . . . 8 (𝑡 = 𝑥 → (𝑡𝑁) = (𝑥𝑁))
2726oveq2d 7446 . . . . . . 7 (𝑡 = 𝑥 → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
2827adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑡 = 𝑥) → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
29 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
304adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 + 1) ∈ ℂ)
31 ioossicc 13469 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3231a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3332sselda 3994 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3433, 13syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥𝑁) ∈ ℂ)
3530, 34mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
3625, 28, 29, 35fvmptd 7022 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) = ((𝑁 + 1) · (𝑥𝑁)))
3736itgeq2dv 25831 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
38 itgpowd.3 . . . . . 6 (𝜑𝐴𝐵)
39 reelprrecn 11244 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
419a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
4241sselda 3994 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
43 1nn0 12539 . . . . . . . . . . . 12 1 ∈ ℕ0
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
451, 44nn0addcld 12588 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ0)
4645adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℕ0)
4742, 46expcld 14182 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
481nn0cnd 12586 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
4948adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
50 1cnd 11253 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
5149, 50addcld 11277 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℂ)
521adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℕ0)
5342, 52expcld 14182 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑁) ∈ ℂ)
5451, 53mulcld 11278 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
55 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
5645adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℕ0)
5755, 56expcld 14182 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
5857fmpttd 7134 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ)
59 ssidd 4018 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
604adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℂ)
611adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℂ) → 𝑁 ∈ ℕ0)
6255, 61expcld 14182 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑁) ∈ ℂ)
6360, 62mulcld 11278 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℂ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
6463fmpttd 7134 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ)
65 dvexp 26005 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℕ → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
663, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
67 1cnd 11253 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
6848, 67pncand 11618 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
6968oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡↑((𝑁 + 1) − 1)) = (𝑡𝑁))
7069oveq2d 7446 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1))) = ((𝑁 + 1) · (𝑡𝑁)))
7170mpteq2dv 5249 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7266, 71eqtrd 2774 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7372feq1d 6720 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ ↔ (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ))
7464, 73mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ)
7574fdmd 6746 . . . . . . . . . . . 12 (𝜑 → dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = ℂ)
769, 75sseqtrrid 4048 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))
77 dvres3 25962 . . . . . . . . . . 11 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))) → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7840, 58, 59, 76, 77syl22anc 839 . . . . . . . . . 10 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7972reseq1d 5998 . . . . . . . . . 10 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
8078, 79eqtrd 2774 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
81 resmpt 6056 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
829, 81mp1i 13 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
8382oveq2d 7446 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))))
84 resmpt 6056 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
859, 84mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
8680, 83, 853eqtr3d 2782 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
87 eqid 2734 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8887tgioo2 24838 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iccntr 24856 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
905, 6, 89syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9140, 47, 54, 86, 8, 88, 87, 90dvmptres2 26014 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
92 ioossre 13444 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9392, 9sstri 4004 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 cncfmptc 24951 . . . . . . . . 9 (((𝑁 + 1) ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
964, 94, 59, 95syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
97 resmpt 6056 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
9893, 97mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
99 expcncf 24966 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
1001, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
101 rescncf 24936 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
10294, 100, 101sylc 65 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10398, 102eqeltrrd 2839 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10496, 103mulcncf 25493 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10591, 104eqeltrd 2838 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106 ioombl 25613 . . . . . . . . 9 (𝐴(,)𝐵) ∈ dom vol
107106a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
10848adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℂ)
109 1cnd 11253 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
110108, 109addcld 11277 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
11110sselda 3994 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
1121adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
113111, 112expcld 14182 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑁) ∈ ℂ)
114110, 113mulcld 11278 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
115 cncfmptc 24951 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1164, 10, 59, 115syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11710resmptd 6059 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)))
118 rescncf 24936 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
11910, 100, 118sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
120117, 119eqeltrrd 2839 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
121116, 120mulcncf 25493 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
122 cnicciblnc 25892 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
1235, 6, 121, 122syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12432, 107, 114, 123iblss 25854 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12591, 124eqeltrd 2838 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ 𝐿1)
12610resmptd 6059 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
127 expcncf 24966 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
12845, 127syl 17 . . . . . . . 8 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
129 rescncf 24936 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
13010, 128, 129sylc 65 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
131126, 130eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1325, 6, 38, 105, 125, 131ftc2 26099 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)))
13391fveq1d 6908 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
134133ralrimivw 3147 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
135 itgeq2 25827 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
136134, 135syl 17 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
137 eqidd 2735 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
138 simpr 484 . . . . . . . 8 ((𝜑𝑡 = 𝐵) → 𝑡 = 𝐵)
139138oveq1d 7445 . . . . . . 7 ((𝜑𝑡 = 𝐵) → (𝑡↑(𝑁 + 1)) = (𝐵↑(𝑁 + 1)))
1405rexrd 11308 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1416rexrd 11308 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
142 ubicc2 13501 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
143140, 141, 38, 142syl3anc 1370 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐵))
1446recnd 11286 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
145144, 45expcld 14182 . . . . . . 7 (𝜑 → (𝐵↑(𝑁 + 1)) ∈ ℂ)
146137, 139, 143, 145fvmptd 7022 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) = (𝐵↑(𝑁 + 1)))
147 simpr 484 . . . . . . . 8 ((𝜑𝑡 = 𝐴) → 𝑡 = 𝐴)
148147oveq1d 7445 . . . . . . 7 ((𝜑𝑡 = 𝐴) → (𝑡↑(𝑁 + 1)) = (𝐴↑(𝑁 + 1)))
149 lbicc2 13500 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150140, 141, 38, 149syl3anc 1370 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
1515recnd 11286 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
152151, 45expcld 14182 . . . . . . 7 (𝜑 → (𝐴↑(𝑁 + 1)) ∈ ℂ)
153137, 148, 150, 152fvmptd 7022 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴) = (𝐴↑(𝑁 + 1)))
154146, 153oveq12d 7448 . . . . 5 (𝜑 → (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
155132, 136, 1543eqtr3d 2782 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1564adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
157156, 13mulcld 11278 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
1585, 6, 157itgioo 25865 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
15937, 155, 1583eqtr3rd 2783 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
16024, 159eqtrd 2774 . 2 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1614, 22, 23, 160mvllmuld 12096 1 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wss 3962  {cpr 4632   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291  cle 11293  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  (,)cioo 13383  [,]cicc 13386  cexp 14098  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  intcnt 23040  cnccncf 24915  volcvol 25511  𝐿1cibl 25665  citg 25666   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916
This theorem is referenced by:  lcmineqlem3  42012  areaquad  43204
  Copyright terms: Public domain W3C validator