Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgpowd Structured version   Visualization version   GIF version

Theorem itgpowd 39306
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.)
Hypotheses
Ref Expression
itgpowd.1 (𝜑𝐴 ∈ ℝ)
itgpowd.2 (𝜑𝐵 ∈ ℝ)
itgpowd.3 (𝜑𝐴𝐵)
itgpowd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
itgpowd (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem itgpowd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itgpowd.4 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 nn0p1nn 11784 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
43nncnd 11502 . 2 (𝜑 → (𝑁 + 1) ∈ ℂ)
5 itgpowd.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 itgpowd.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
7 iccssre 12668 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9 ax-resscn 10440 . . . . . 6 ℝ ⊆ ℂ
108, 9syl6ss 3901 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
1110sselda 3889 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
121adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
1311, 12expcld 13360 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝑁) ∈ ℂ)
1410resmptd 5789 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)))
15 expcncf 23213 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
161, 15syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
17 rescncf 23188 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
1810, 16, 17sylc 65 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1914, 18eqeltrrd 2884 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
20 cniccibl 24124 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
215, 6, 19, 20syl3anc 1364 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑁)) ∈ 𝐿1)
2213, 21itgcl 24067 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 ∈ ℂ)
233nnne0d 11535 . 2 (𝜑 → (𝑁 + 1) ≠ 0)
244, 13, 21itgmulc2 24117 . . 3 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
25 eqidd 2796 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
26 oveq1 7023 . . . . . . . 8 (𝑡 = 𝑥 → (𝑡𝑁) = (𝑥𝑁))
2726oveq2d 7032 . . . . . . 7 (𝑡 = 𝑥 → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
2827adantl 482 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑡 = 𝑥) → ((𝑁 + 1) · (𝑡𝑁)) = ((𝑁 + 1) · (𝑥𝑁)))
29 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
304adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 + 1) ∈ ℂ)
31 ioossicc 12672 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3231a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3332sselda 3889 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3433, 13syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥𝑁) ∈ ℂ)
3530, 34mulcld 10507 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
3625, 28, 29, 35fvmptd 6641 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) = ((𝑁 + 1) · (𝑥𝑁)))
3736itgeq2dv 24065 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
38 itgpowd.3 . . . . . 6 (𝜑𝐴𝐵)
39 reelprrecn 10475 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
419a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
4241sselda 3889 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
43 1nn0 11761 . . . . . . . . . . . 12 1 ∈ ℕ0
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
451, 44nn0addcld 11807 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℕ0)
4645adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℕ0)
4742, 46expcld 13360 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
481nn0cnd 11805 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
4948adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
50 1cnd 10482 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
5149, 50addcld 10506 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑁 + 1) ∈ ℂ)
521adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℕ0)
5342, 52expcld 13360 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑁) ∈ ℂ)
5451, 53mulcld 10507 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
55 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
5645adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℕ0)
5755, 56expcld 13360 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(𝑁 + 1)) ∈ ℂ)
5857fmpttd 6742 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ)
59 ssidd 3911 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
604adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑁 + 1) ∈ ℂ)
611adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℂ) → 𝑁 ∈ ℕ0)
6255, 61expcld 13360 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑁) ∈ ℂ)
6360, 62mulcld 10507 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℂ) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
6463fmpttd 6742 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ)
65 dvexp 24233 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℕ → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
663, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))))
67 1cnd 10482 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
6848, 67pncand 10846 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
6968oveq2d 7032 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡↑((𝑁 + 1) − 1)) = (𝑡𝑁))
7069oveq2d 7032 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1))) = ((𝑁 + 1) · (𝑡𝑁)))
7170mpteq2dv 5056 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡↑((𝑁 + 1) − 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7266, 71eqtrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))))
7372feq1d 6367 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ ↔ (𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))):ℂ⟶ℂ))
7464, 73mpbird 258 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))):ℂ⟶ℂ)
7574fdmd 6391 . . . . . . . . . . . 12 (𝜑 → dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) = ℂ)
769, 75sseqtrrid 3941 . . . . . . . . . . 11 (𝜑 → ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))
77 dvres3 24194 . . . . . . . . . . 11 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))))) → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7840, 58, 59, 76, 77syl22anc 835 . . . . . . . . . 10 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ))
7972reseq1d 5733 . . . . . . . . . 10 (𝜑 → ((ℂ D (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1)))) ↾ ℝ) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
8078, 79eqtrd 2831 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ))
81 resmpt 5786 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
829, 81mp1i 13 . . . . . . . . . 10 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1))))
8382oveq2d 7032 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ ℝ)) = (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))))
84 resmpt 5786 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
859, 84mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ ((𝑁 + 1) · (𝑡𝑁))) ↾ ℝ) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
8680, 83, 853eqtr3d 2839 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ ℝ ↦ ((𝑁 + 1) · (𝑡𝑁))))
87 eqid 2795 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8887tgioo2 23094 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iccntr 23112 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
905, 6, 89syl2anc 584 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9140, 47, 54, 86, 8, 88, 87, 90dvmptres2 24242 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))))
92 ioossre 12648 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9392, 9sstri 3898 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
9493a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
95 cncfmptc 23202 . . . . . . . . 9 (((𝑁 + 1) ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
964, 94, 59, 95syl3anc 1364 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
97 resmpt 5786 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
9893, 97mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)))
99 expcncf 23213 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
1001, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ))
101 rescncf 23188 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
10294, 100, 101sylc 65 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10398, 102eqeltrrd 2884 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10496, 103mulcncf 23730 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10591, 104eqeltrd 2883 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106 ioombl 23849 . . . . . . . . 9 (𝐴(,)𝐵) ∈ dom vol
107106a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
10848adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℂ)
109 1cnd 10482 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
110108, 109addcld 10506 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
11110sselda 3889 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
1121adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0)
113111, 112expcld 13360 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑁) ∈ ℂ)
114110, 113mulcld 10507 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑡𝑁)) ∈ ℂ)
115 cncfmptc 23202 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1164, 10, 59, 115syl3anc 1364 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑁 + 1)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
11710resmptd 5789 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)))
118 rescncf 23188 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
11910, 100, 118sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑁)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
120117, 119eqeltrrd 2884 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
121116, 120mulcncf 23730 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
122 cniccibl 24124 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
1235, 6, 121, 122syl3anc 1364 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12432, 107, 114, 123iblss 24088 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁))) ∈ 𝐿1)
12591, 124eqeltrd 2883 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))) ∈ 𝐿1)
12610resmptd 5789 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
127 expcncf 23213 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
12845, 127syl 17 . . . . . . . 8 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ))
129 rescncf 23188 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
13010, 128, 129sylc 65 . . . . . . 7 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡↑(𝑁 + 1))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
131126, 130eqeltrrd 2884 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
1325, 6, 38, 105, 125, 131ftc2 24324 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)))
13391fveq1d 6540 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
134133ralrimivw 3150 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥))
135 itgeq2 24061 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) = ((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
136134, 135syl 17 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥)
137 eqidd 2796 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1))))
138 simpr 485 . . . . . . . 8 ((𝜑𝑡 = 𝐵) → 𝑡 = 𝐵)
139138oveq1d 7031 . . . . . . 7 ((𝜑𝑡 = 𝐵) → (𝑡↑(𝑁 + 1)) = (𝐵↑(𝑁 + 1)))
1405rexrd 10537 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1416rexrd 10537 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
142 ubicc2 12703 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
143140, 141, 38, 142syl3anc 1364 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐵))
1446recnd 10515 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
145144, 45expcld 13360 . . . . . . 7 (𝜑 → (𝐵↑(𝑁 + 1)) ∈ ℂ)
146137, 139, 143, 145fvmptd 6641 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) = (𝐵↑(𝑁 + 1)))
147 simpr 485 . . . . . . . 8 ((𝜑𝑡 = 𝐴) → 𝑡 = 𝐴)
148147oveq1d 7031 . . . . . . 7 ((𝜑𝑡 = 𝐴) → (𝑡↑(𝑁 + 1)) = (𝐴↑(𝑁 + 1)))
149 lbicc2 12702 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150140, 141, 38, 149syl3anc 1364 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
1515recnd 10515 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
152151, 45expcld 13360 . . . . . . 7 (𝜑 → (𝐴↑(𝑁 + 1)) ∈ ℂ)
153137, 148, 150, 152fvmptd 6641 . . . . . 6 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴) = (𝐴↑(𝑁 + 1)))
154146, 153oveq12d 7034 . . . . 5 (𝜑 → (((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐵) − ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡↑(𝑁 + 1)))‘𝐴)) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
155132, 136, 1543eqtr3d 2839 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑡 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + 1) · (𝑡𝑁)))‘𝑥) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1564adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑁 + 1) ∈ ℂ)
157156, 13mulcld 10507 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑁 + 1) · (𝑥𝑁)) ∈ ℂ)
1585, 6, 157itgioo 24099 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥)
15937, 155, 1583eqtr3rd 2840 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝑁 + 1) · (𝑥𝑁)) d𝑥 = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
16024, 159eqtrd 2831 . 2 (𝜑 → ((𝑁 + 1) · ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥) = ((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))))
1614, 22, 23, 160mvllmuld 11320 1 (𝜑 → ∫(𝐴[,]𝐵)(𝑥𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  wss 3859  {cpr 4474   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  1c1 10384   + caddc 10386   · cmul 10388  *cxr 10520  cle 10522  cmin 10717   / cdiv 11145  cn 11486  0cn0 11745  (,)cioo 12588  [,]cicc 12591  cexp 13279  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  intcnt 21309  cnccncf 23167  volcvol 23747  𝐿1cibl 23901  citg 23902   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cc 9703  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-symdif 4139  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-ofr 7268  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-acn 9217  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-ovol 23748  df-vol 23749  df-mbf 23903  df-itg1 23904  df-itg2 23905  df-ibl 23906  df-itg 23907  df-0p 23954  df-limc 24147  df-dv 24148
This theorem is referenced by:  areaquad  39308
  Copyright terms: Public domain W3C validator