Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccm1k Structured version   Visualization version   GIF version

Theorem bccm1k 44337
Description: Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccm1k.c (𝜑𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}))
bccm1k.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
bccm1k (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bccm1k
StepHypRef Expression
1 bccm1k.c . . . . 5 (𝜑𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}))
21eldifad 3974 . . . 4 (𝜑𝐶 ∈ ℂ)
3 bccm1k.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
43nncnd 12279 . . . . 5 (𝜑𝐾 ∈ ℂ)
5 1cnd 11253 . . . . 5 (𝜑 → 1 ∈ ℂ)
64, 5subcld 11617 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℂ)
72, 6subcld 11617 . . 3 (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ)
83nnne0d 12313 . . 3 (𝜑𝐾 ≠ 0)
97, 4, 8divcld 12040 . 2 (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ∈ ℂ)
10 nnm1nn0 12564 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
113, 10syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
122, 11bcccl 44334 . 2 (𝜑 → (𝐶C𝑐(𝐾 − 1)) ∈ ℂ)
13 eldifsni 4794 . . . . 5 (𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}) → 𝐶 ≠ (𝐾 − 1))
141, 13syl 17 . . . 4 (𝜑𝐶 ≠ (𝐾 − 1))
152, 6, 14subne0d 11626 . . 3 (𝜑 → (𝐶 − (𝐾 − 1)) ≠ 0)
167, 4, 15, 8divne0d 12056 . 2 (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ≠ 0)
172, 11bccp1k 44336 . . . 4 (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))))
184, 5npcand 11621 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1918oveq2d 7446 . . . 4 (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = (𝐶C𝑐𝐾))
2018oveq2d 7446 . . . . 5 (𝜑 → ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)) = ((𝐶 − (𝐾 − 1)) / 𝐾))
2120oveq2d 7446 . . . 4 (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)))
2217, 19, 213eqtr3d 2782 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)))
2312, 9mulcomd 11279 . . 3 (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)) = (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))))
2422, 23eqtr2d 2775 . 2 (𝜑 → (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))) = (𝐶C𝑐𝐾))
259, 12, 16, 24mvllmuld 12096 1 (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wne 2937  cdif 3959  {csn 4630  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  C𝑐cbcc 44331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936  df-fallfac 16039  df-bcc 44332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator