| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccm1k | Structured version Visualization version GIF version | ||
| Description: Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccm1k.c | ⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) |
| bccm1k.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| bccm1k | ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bccm1k.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) | |
| 2 | 1 | eldifad 3938 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 3 | bccm1k.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 4 | 3 | nncnd 12254 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 5 | 1cnd 11228 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 6 | 4, 5 | subcld 11592 | . . . 4 ⊢ (𝜑 → (𝐾 − 1) ∈ ℂ) |
| 7 | 2, 6 | subcld 11592 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ) |
| 8 | 3 | nnne0d 12288 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 0) |
| 9 | 7, 4, 8 | divcld 12015 | . 2 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ∈ ℂ) |
| 10 | nnm1nn0 12540 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
| 12 | 2, 11 | bcccl 44311 | . 2 ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) ∈ ℂ) |
| 13 | eldifsni 4766 | . . . . 5 ⊢ (𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}) → 𝐶 ≠ (𝐾 − 1)) | |
| 14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ (𝐾 − 1)) |
| 15 | 2, 6, 14 | subne0d 11601 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐾 − 1)) ≠ 0) |
| 16 | 7, 4, 15, 8 | divne0d 12031 | . 2 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ≠ 0) |
| 17 | 2, 11 | bccp1k 44313 | . . . 4 ⊢ (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)))) |
| 18 | 4, 5 | npcand 11596 | . . . . 5 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 19 | 18 | oveq2d 7419 | . . . 4 ⊢ (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = (𝐶C𝑐𝐾)) |
| 20 | 18 | oveq2d 7419 | . . . . 5 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)) = ((𝐶 − (𝐾 − 1)) / 𝐾)) |
| 21 | 20 | oveq2d 7419 | . . . 4 ⊢ (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| 22 | 17, 19, 21 | 3eqtr3d 2778 | . . 3 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| 23 | 12, 9 | mulcomd 11254 | . . 3 ⊢ (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)) = (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1)))) |
| 24 | 22, 23 | eqtr2d 2771 | . 2 ⊢ (𝜑 → (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))) = (𝐶C𝑐𝐾)) |
| 25 | 9, 12, 16, 24 | mvllmuld 12071 | 1 ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 (class class class)co 7403 ℂcc 11125 1c1 11128 + caddc 11130 · cmul 11132 − cmin 11464 / cdiv 11892 ℕcn 12238 ℕ0cn0 12499 C𝑐cbcc 44308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-fac 14290 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-prod 15918 df-fallfac 16021 df-bcc 44309 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |