Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccm1k Structured version   Visualization version   GIF version

Theorem bccm1k 44331
Description: Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccm1k.c (𝜑𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}))
bccm1k.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
bccm1k (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bccm1k
StepHypRef Expression
1 bccm1k.c . . . . 5 (𝜑𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}))
21eldifad 3926 . . . 4 (𝜑𝐶 ∈ ℂ)
3 bccm1k.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
43nncnd 12202 . . . . 5 (𝜑𝐾 ∈ ℂ)
5 1cnd 11169 . . . . 5 (𝜑 → 1 ∈ ℂ)
64, 5subcld 11533 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℂ)
72, 6subcld 11533 . . 3 (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ)
83nnne0d 12236 . . 3 (𝜑𝐾 ≠ 0)
97, 4, 8divcld 11958 . 2 (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ∈ ℂ)
10 nnm1nn0 12483 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
113, 10syl 17 . . 3 (𝜑 → (𝐾 − 1) ∈ ℕ0)
122, 11bcccl 44328 . 2 (𝜑 → (𝐶C𝑐(𝐾 − 1)) ∈ ℂ)
13 eldifsni 4754 . . . . 5 (𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}) → 𝐶 ≠ (𝐾 − 1))
141, 13syl 17 . . . 4 (𝜑𝐶 ≠ (𝐾 − 1))
152, 6, 14subne0d 11542 . . 3 (𝜑 → (𝐶 − (𝐾 − 1)) ≠ 0)
167, 4, 15, 8divne0d 11974 . 2 (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ≠ 0)
172, 11bccp1k 44330 . . . 4 (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))))
184, 5npcand 11537 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
1918oveq2d 7403 . . . 4 (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = (𝐶C𝑐𝐾))
2018oveq2d 7403 . . . . 5 (𝜑 → ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)) = ((𝐶 − (𝐾 − 1)) / 𝐾))
2120oveq2d 7403 . . . 4 (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)))
2217, 19, 213eqtr3d 2772 . . 3 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)))
2312, 9mulcomd 11195 . . 3 (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)) = (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))))
2422, 23eqtr2d 2765 . 2 (𝜑 → (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))) = (𝐶C𝑐𝐾))
259, 12, 16, 24mvllmuld 12014 1 (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  C𝑐cbcc 44325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-fallfac 15973  df-bcc 44326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator