| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bccm1k | Structured version Visualization version GIF version | ||
| Description: Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| bccm1k.c | ⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) |
| bccm1k.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| bccm1k | ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bccm1k.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) | |
| 2 | 1 | eldifad 3911 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 3 | bccm1k.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 4 | 3 | nncnd 12151 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 5 | 1cnd 11117 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 6 | 4, 5 | subcld 11482 | . . . 4 ⊢ (𝜑 → (𝐾 − 1) ∈ ℂ) |
| 7 | 2, 6 | subcld 11482 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ) |
| 8 | 3 | nnne0d 12185 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 0) |
| 9 | 7, 4, 8 | divcld 11907 | . 2 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ∈ ℂ) |
| 10 | nnm1nn0 12432 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
| 12 | 2, 11 | bcccl 44446 | . 2 ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) ∈ ℂ) |
| 13 | eldifsni 4743 | . . . . 5 ⊢ (𝐶 ∈ (ℂ ∖ {(𝐾 − 1)}) → 𝐶 ≠ (𝐾 − 1)) | |
| 14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ (𝐾 − 1)) |
| 15 | 2, 6, 14 | subne0d 11491 | . . 3 ⊢ (𝜑 → (𝐶 − (𝐾 − 1)) ≠ 0) |
| 16 | 7, 4, 15, 8 | divne0d 11923 | . 2 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / 𝐾) ≠ 0) |
| 17 | 2, 11 | bccp1k 44448 | . . . 4 ⊢ (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)))) |
| 18 | 4, 5 | npcand 11486 | . . . . 5 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 19 | 18 | oveq2d 7371 | . . . 4 ⊢ (𝜑 → (𝐶C𝑐((𝐾 − 1) + 1)) = (𝐶C𝑐𝐾)) |
| 20 | 18 | oveq2d 7371 | . . . . 5 ⊢ (𝜑 → ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1)) = ((𝐶 − (𝐾 − 1)) / 𝐾)) |
| 21 | 20 | oveq2d 7371 | . . . 4 ⊢ (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / ((𝐾 − 1) + 1))) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| 22 | 17, 19, 21 | 3eqtr3d 2776 | . . 3 ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| 23 | 12, 9 | mulcomd 11143 | . . 3 ⊢ (𝜑 → ((𝐶C𝑐(𝐾 − 1)) · ((𝐶 − (𝐾 − 1)) / 𝐾)) = (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1)))) |
| 24 | 22, 23 | eqtr2d 2769 | . 2 ⊢ (𝜑 → (((𝐶 − (𝐾 − 1)) / 𝐾) · (𝐶C𝑐(𝐾 − 1))) = (𝐶C𝑐𝐾)) |
| 25 | 9, 12, 16, 24 | mvllmuld 11963 | 1 ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∖ cdif 3896 {csn 4577 (class class class)co 7355 ℂcc 11014 1c1 11017 + caddc 11019 · cmul 11021 − cmin 11354 / cdiv 11784 ℕcn 12135 ℕ0cn0 12391 C𝑐cbcc 44443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-seq 13919 df-exp 13979 df-fac 14191 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-prod 15821 df-fallfac 15924 df-bcc 44444 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |