![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccm1k | Structured version Visualization version GIF version |
Description: Generalized binomial coefficient: ๐ถ choose (๐พ โ 1), when ๐ถ is not (๐พ โ 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccm1k.c | โข (๐ โ ๐ถ โ (โ โ {(๐พ โ 1)})) |
bccm1k.k | โข (๐ โ ๐พ โ โ) |
Ref | Expression |
---|---|
bccm1k | โข (๐ โ (๐ถC๐(๐พ โ 1)) = ((๐ถC๐๐พ) / ((๐ถ โ (๐พ โ 1)) / ๐พ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccm1k.c | . . . . 5 โข (๐ โ ๐ถ โ (โ โ {(๐พ โ 1)})) | |
2 | 1 | eldifad 3960 | . . . 4 โข (๐ โ ๐ถ โ โ) |
3 | bccm1k.k | . . . . . 6 โข (๐ โ ๐พ โ โ) | |
4 | 3 | nncnd 12227 | . . . . 5 โข (๐ โ ๐พ โ โ) |
5 | 1cnd 11208 | . . . . 5 โข (๐ โ 1 โ โ) | |
6 | 4, 5 | subcld 11570 | . . . 4 โข (๐ โ (๐พ โ 1) โ โ) |
7 | 2, 6 | subcld 11570 | . . 3 โข (๐ โ (๐ถ โ (๐พ โ 1)) โ โ) |
8 | 3 | nnne0d 12261 | . . 3 โข (๐ โ ๐พ โ 0) |
9 | 7, 4, 8 | divcld 11989 | . 2 โข (๐ โ ((๐ถ โ (๐พ โ 1)) / ๐พ) โ โ) |
10 | nnm1nn0 12512 | . . . 4 โข (๐พ โ โ โ (๐พ โ 1) โ โ0) | |
11 | 3, 10 | syl 17 | . . 3 โข (๐ โ (๐พ โ 1) โ โ0) |
12 | 2, 11 | bcccl 43088 | . 2 โข (๐ โ (๐ถC๐(๐พ โ 1)) โ โ) |
13 | eldifsni 4793 | . . . . 5 โข (๐ถ โ (โ โ {(๐พ โ 1)}) โ ๐ถ โ (๐พ โ 1)) | |
14 | 1, 13 | syl 17 | . . . 4 โข (๐ โ ๐ถ โ (๐พ โ 1)) |
15 | 2, 6, 14 | subne0d 11579 | . . 3 โข (๐ โ (๐ถ โ (๐พ โ 1)) โ 0) |
16 | 7, 4, 15, 8 | divne0d 12005 | . 2 โข (๐ โ ((๐ถ โ (๐พ โ 1)) / ๐พ) โ 0) |
17 | 2, 11 | bccp1k 43090 | . . . 4 โข (๐ โ (๐ถC๐((๐พ โ 1) + 1)) = ((๐ถC๐(๐พ โ 1)) ยท ((๐ถ โ (๐พ โ 1)) / ((๐พ โ 1) + 1)))) |
18 | 4, 5 | npcand 11574 | . . . . 5 โข (๐ โ ((๐พ โ 1) + 1) = ๐พ) |
19 | 18 | oveq2d 7424 | . . . 4 โข (๐ โ (๐ถC๐((๐พ โ 1) + 1)) = (๐ถC๐๐พ)) |
20 | 18 | oveq2d 7424 | . . . . 5 โข (๐ โ ((๐ถ โ (๐พ โ 1)) / ((๐พ โ 1) + 1)) = ((๐ถ โ (๐พ โ 1)) / ๐พ)) |
21 | 20 | oveq2d 7424 | . . . 4 โข (๐ โ ((๐ถC๐(๐พ โ 1)) ยท ((๐ถ โ (๐พ โ 1)) / ((๐พ โ 1) + 1))) = ((๐ถC๐(๐พ โ 1)) ยท ((๐ถ โ (๐พ โ 1)) / ๐พ))) |
22 | 17, 19, 21 | 3eqtr3d 2780 | . . 3 โข (๐ โ (๐ถC๐๐พ) = ((๐ถC๐(๐พ โ 1)) ยท ((๐ถ โ (๐พ โ 1)) / ๐พ))) |
23 | 12, 9 | mulcomd 11234 | . . 3 โข (๐ โ ((๐ถC๐(๐พ โ 1)) ยท ((๐ถ โ (๐พ โ 1)) / ๐พ)) = (((๐ถ โ (๐พ โ 1)) / ๐พ) ยท (๐ถC๐(๐พ โ 1)))) |
24 | 22, 23 | eqtr2d 2773 | . 2 โข (๐ โ (((๐ถ โ (๐พ โ 1)) / ๐พ) ยท (๐ถC๐(๐พ โ 1))) = (๐ถC๐๐พ)) |
25 | 9, 12, 16, 24 | mvllmuld 12045 | 1 โข (๐ โ (๐ถC๐(๐พ โ 1)) = ((๐ถC๐๐พ) / ((๐ถ โ (๐พ โ 1)) / ๐พ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โ wne 2940 โ cdif 3945 {csn 4628 (class class class)co 7408 โcc 11107 1c1 11110 + caddc 11112 ยท cmul 11114 โ cmin 11443 / cdiv 11870 โcn 12211 โ0cn0 12471 C๐cbcc 43085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-fac 14233 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-prod 15849 df-fallfac 15950 df-bcc 43086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |