MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumkthpow Structured version   Visualization version   GIF version

Theorem fsumkthpow 15766
Description: A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑀

Proof of Theorem fsumkthpow
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 12272 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
21adantr 481 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℕ)
32nncnd 11989 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℂ)
4 fzfid 13693 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0...𝑀) ∈ Fin)
5 elfzelz 13256 . . . . 5 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℤ)
65zcnd 12427 . . . 4 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℂ)
7 simpl 483 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℕ0)
8 expcl 13800 . . . 4 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝑛𝐾) ∈ ℂ)
96, 7, 8syl2anr 597 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛𝐾) ∈ ℂ)
104, 9fsumcl 15445 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) ∈ ℂ)
112nnne0d 12023 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ≠ 0)
124, 3, 9fsummulc2 15496 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
13 bpolydif 15765 . . . . . 6 (((𝐾 + 1) ∈ ℕ ∧ 𝑛 ∈ ℂ) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
142, 6, 13syl2an 596 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
15 nn0cn 12243 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1615ad2antrr 723 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → 𝐾 ∈ ℂ)
17 ax-1cn 10929 . . . . . . . 8 1 ∈ ℂ
18 pncan 11227 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) − 1) = 𝐾)
2019oveq2d 7291 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛↑((𝐾 + 1) − 1)) = (𝑛𝐾))
2120oveq2d 7291 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))) = ((𝐾 + 1) · (𝑛𝐾)))
2214, 21eqtrd 2778 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛𝐾)))
2322sumeq2dv 15415 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
24 oveq2 7283 . . . 4 (𝑘 = 𝑛 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 𝑛))
25 oveq2 7283 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑛 + 1)))
26 oveq2 7283 . . . 4 (𝑘 = 0 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 0))
27 oveq2 7283 . . . 4 (𝑘 = (𝑀 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑀 + 1)))
28 nn0z 12343 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2928adantl 482 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
30 peano2nn0 12273 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
3130adantl 482 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
32 nn0uz 12620 . . . . 5 0 = (ℤ‘0)
3331, 32eleqtrdi 2849 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ (ℤ‘0))
34 peano2nn0 12273 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3534ad2antrr 723 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → (𝐾 + 1) ∈ ℕ0)
36 elfznn0 13349 . . . . . . 7 (𝑘 ∈ (0...(𝑀 + 1)) → 𝑘 ∈ ℕ0)
3736adantl 482 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℕ0)
3837nn0cnd 12295 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℂ)
39 bpolycl 15762 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ ℂ) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4035, 38, 39syl2anc 584 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4124, 25, 26, 27, 29, 33, 40telfsum2 15517 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
4212, 23, 413eqtr2d 2784 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
433, 10, 11, 42mvllmuld 11807 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  Σcsu 15397   BernPoly cbp 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-bpoly 15757
This theorem is referenced by:  fsumcube  15770
  Copyright terms: Public domain W3C validator