MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumkthpow Structured version   Visualization version   GIF version

Theorem fsumkthpow 16070
Description: A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑀

Proof of Theorem fsumkthpow
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 12538 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
21adantr 480 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℕ)
32nncnd 12254 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℂ)
4 fzfid 13989 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0...𝑀) ∈ Fin)
5 elfzelz 13539 . . . . 5 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℤ)
65zcnd 12696 . . . 4 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℂ)
7 simpl 482 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℕ0)
8 expcl 14095 . . . 4 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝑛𝐾) ∈ ℂ)
96, 7, 8syl2anr 597 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛𝐾) ∈ ℂ)
104, 9fsumcl 15747 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) ∈ ℂ)
112nnne0d 12288 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ≠ 0)
124, 3, 9fsummulc2 15798 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
13 bpolydif 16069 . . . . . 6 (((𝐾 + 1) ∈ ℕ ∧ 𝑛 ∈ ℂ) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
142, 6, 13syl2an 596 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
15 nn0cn 12509 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1615ad2antrr 726 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → 𝐾 ∈ ℂ)
17 ax-1cn 11185 . . . . . . . 8 1 ∈ ℂ
18 pncan 11486 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) − 1) = 𝐾)
2019oveq2d 7419 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛↑((𝐾 + 1) − 1)) = (𝑛𝐾))
2120oveq2d 7419 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))) = ((𝐾 + 1) · (𝑛𝐾)))
2214, 21eqtrd 2770 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛𝐾)))
2322sumeq2dv 15716 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
24 oveq2 7411 . . . 4 (𝑘 = 𝑛 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 𝑛))
25 oveq2 7411 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑛 + 1)))
26 oveq2 7411 . . . 4 (𝑘 = 0 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 0))
27 oveq2 7411 . . . 4 (𝑘 = (𝑀 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑀 + 1)))
28 nn0z 12611 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2928adantl 481 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
30 peano2nn0 12539 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
3130adantl 481 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
32 nn0uz 12892 . . . . 5 0 = (ℤ‘0)
3331, 32eleqtrdi 2844 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ (ℤ‘0))
34 peano2nn0 12539 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3534ad2antrr 726 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → (𝐾 + 1) ∈ ℕ0)
36 elfznn0 13635 . . . . . . 7 (𝑘 ∈ (0...(𝑀 + 1)) → 𝑘 ∈ ℕ0)
3736adantl 481 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℕ0)
3837nn0cnd 12562 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℂ)
39 bpolycl 16066 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ ℂ) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4035, 38, 39syl2anc 584 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4124, 25, 26, 27, 29, 33, 40telfsum2 15819 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
4212, 23, 413eqtr2d 2776 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
433, 10, 11, 42mvllmuld 12071 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cmin 11464   / cdiv 11892  cn 12238  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  cexp 14077  Σcsu 15700   BernPoly cbp 16060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-bpoly 16061
This theorem is referenced by:  fsumcube  16074
  Copyright terms: Public domain W3C validator