MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumkthpow Structured version   Visualization version   GIF version

Theorem fsumkthpow 14986
Description: A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑀

Proof of Theorem fsumkthpow
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11532 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
21adantr 466 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℕ)
32nncnd 11236 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℂ)
4 fzfid 12973 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0...𝑀) ∈ Fin)
5 elfzelz 12542 . . . . 5 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℤ)
65zcnd 11683 . . . 4 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℂ)
7 simpl 468 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℕ0)
8 expcl 13078 . . . 4 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝑛𝐾) ∈ ℂ)
96, 7, 8syl2anr 584 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛𝐾) ∈ ℂ)
104, 9fsumcl 14665 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) ∈ ℂ)
112nnne0d 11265 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ≠ 0)
124, 3, 9fsummulc2 14716 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
13 bpolydif 14985 . . . . . 6 (((𝐾 + 1) ∈ ℕ ∧ 𝑛 ∈ ℂ) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
142, 6, 13syl2an 583 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
15 nn0cn 11502 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1615ad2antrr 705 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → 𝐾 ∈ ℂ)
17 ax-1cn 10194 . . . . . . . 8 1 ∈ ℂ
18 pncan 10487 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1916, 17, 18sylancl 574 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) − 1) = 𝐾)
2019oveq2d 6807 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛↑((𝐾 + 1) − 1)) = (𝑛𝐾))
2120oveq2d 6807 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))) = ((𝐾 + 1) · (𝑛𝐾)))
2214, 21eqtrd 2805 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛𝐾)))
2322sumeq2dv 14634 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
24 oveq2 6799 . . . 4 (𝑘 = 𝑛 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 𝑛))
25 oveq2 6799 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑛 + 1)))
26 oveq2 6799 . . . 4 (𝑘 = 0 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 0))
27 oveq2 6799 . . . 4 (𝑘 = (𝑀 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑀 + 1)))
28 nn0z 11600 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2928adantl 467 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
30 peano2nn0 11533 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
3130adantl 467 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
32 nn0uz 11922 . . . . 5 0 = (ℤ‘0)
3331, 32syl6eleq 2860 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ (ℤ‘0))
34 peano2nn0 11533 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3534ad2antrr 705 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → (𝐾 + 1) ∈ ℕ0)
36 elfznn0 12633 . . . . . . 7 (𝑘 ∈ (0...(𝑀 + 1)) → 𝑘 ∈ ℕ0)
3736adantl 467 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℕ0)
3837nn0cnd 11553 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℂ)
39 bpolycl 14982 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ ℂ) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4035, 38, 39syl2anc 573 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4124, 25, 26, 27, 29, 33, 40telfsum2 14737 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
4212, 23, 413eqtr2d 2811 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
433, 10, 11, 42mvllmuld 11057 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6029  (class class class)co 6791  cc 10134  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141  cmin 10466   / cdiv 10884  cn 11220  0cn0 11492  cz 11577  cuz 11886  ...cfz 12526  cexp 13060  Σcsu 14617   BernPoly cbp 14976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-bpoly 14977
This theorem is referenced by:  fsumcube  14990
  Copyright terms: Public domain W3C validator