MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efneg Structured version   Visualization version   GIF version

Theorem efneg 16036
Description: The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efneg (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴)))

Proof of Theorem efneg
StepHypRef Expression
1 efcl 16021 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2 negcl 11455 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3 efcl 16021 . . 3 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
42, 3syl 17 . 2 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
5 efne0 16035 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
6 efcan 16034 . 2 (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1)
71, 4, 5, 6mvllmuld 12041 1 (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6539  (class class class)co 7403  cc 11103  1c1 11106  -cneg 11440   / cdiv 11866  expce 16000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-z 12554  df-uz 12818  df-rp 12970  df-ico 13325  df-fz 13480  df-fzo 13623  df-fl 13752  df-seq 13962  df-exp 14023  df-fac 14229  df-bc 14258  df-hash 14286  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15410  df-clim 15427  df-rlim 15428  df-sum 15628  df-ef 16006
This theorem is referenced by:  efexp  16039  logrec  26247  asinneg  26370  birthdaylem3  26437  birthday  26438  igamlgam  26533  subfaclim  34116  expgrowth  43026
  Copyright terms: Public domain W3C validator