MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmul2c Structured version   Visualization version   GIF version

Theorem decmul2c 12797
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul1.p 𝑃 ∈ ℕ0
decmul1.a 𝐴 ∈ ℕ0
decmul1.b 𝐵 ∈ ℕ0
decmul1.n 𝑁 = 𝐴𝐵
decmul1.0 𝐷 ∈ ℕ0
decmul1c.e 𝐸 ∈ ℕ0
decmul2c.c ((𝑃 · 𝐴) + 𝐸) = 𝐶
decmul2c.2 (𝑃 · 𝐵) = 𝐸𝐷
Assertion
Ref Expression
decmul2c (𝑃 · 𝑁) = 𝐶𝐷

Proof of Theorem decmul2c
StepHypRef Expression
1 10nn0 12749 . . 3 10 ∈ ℕ0
2 decmul1.p . . 3 𝑃 ∈ ℕ0
3 decmul1.a . . 3 𝐴 ∈ ℕ0
4 decmul1.b . . 3 𝐵 ∈ ℕ0
5 decmul1.n . . . 4 𝑁 = 𝐴𝐵
6 dfdec10 12734 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
75, 6eqtri 2754 . . 3 𝑁 = ((10 · 𝐴) + 𝐵)
8 decmul1.0 . . 3 𝐷 ∈ ℕ0
9 decmul1c.e . . 3 𝐸 ∈ ℕ0
10 decmul2c.c . . 3 ((𝑃 · 𝐴) + 𝐸) = 𝐶
11 decmul2c.2 . . . 4 (𝑃 · 𝐵) = 𝐸𝐷
12 dfdec10 12734 . . . 4 𝐸𝐷 = ((10 · 𝐸) + 𝐷)
1311, 12eqtri 2754 . . 3 (𝑃 · 𝐵) = ((10 · 𝐸) + 𝐷)
141, 2, 3, 4, 7, 8, 9, 10, 13nummul2c 12781 . 2 (𝑃 · 𝑁) = ((10 · 𝐶) + 𝐷)
15 dfdec10 12734 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
1614, 15eqtr4i 2757 1 (𝑃 · 𝑁) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7426  0cc0 11160  1c1 11161   + caddc 11163   · cmul 11165  0cn0 12526  cdc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-ltxr 11305  df-sub 11498  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-dec 12732
This theorem is referenced by:  decmulnc  12798  2exp8  17093  2exp16  17095  prmlem2  17124  37prm  17125  1259lem2  17136  1259lem3  17137  1259lem4  17138  1259prm  17140  2503lem1  17141  2503lem2  17142  2503prm  17144  4001lem1  17145  4001lem2  17146  4001lem3  17147  4001prm  17149  log2ublem3  26979  log2ub  26980  birthday  26985  dpmul  32776  420gcd8e4  41707  420lcm8e840  41712  3exp7  41754  3lexlogpow5ineq1  41755  3lexlogpow5ineq5  41761  aks4d1p1  41777  decpmulnc  42006  235t711  42012  ex-decpmul  42013  resqrtvalex  43330  imsqrtvalex  43331  257prm  47151  fmtno4prmfac  47162  fmtno4prmfac193  47163  fmtno4nprmfac193  47164  m11nprm  47191  2exp340mod341  47323
  Copyright terms: Public domain W3C validator