| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decmul2c | Structured version Visualization version GIF version | ||
| Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
| decmul1c.e | ⊢ 𝐸 ∈ ℕ0 |
| decmul2c.c | ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 |
| decmul2c.2 | ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 |
| Ref | Expression |
|---|---|
| decmul2c | ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12673 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 12658 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2753 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 9 | decmul1c.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 10 | decmul2c.c | . . 3 ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 | |
| 11 | decmul2c.2 | . . . 4 ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 | |
| 12 | dfdec10 12658 | . . . 4 ⊢ ;𝐸𝐷 = ((;10 · 𝐸) + 𝐷) | |
| 13 | 11, 12 | eqtri 2753 | . . 3 ⊢ (𝑃 · 𝐵) = ((;10 · 𝐸) + 𝐷) |
| 14 | 1, 2, 3, 4, 7, 8, 9, 10, 13 | nummul2c 12705 | . 2 ⊢ (𝑃 · 𝑁) = ((;10 · 𝐶) + 𝐷) |
| 15 | dfdec10 12658 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 16 | 14, 15 | eqtr4i 2756 | 1 ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 ℕ0cn0 12448 ;cdc 12655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-dec 12656 |
| This theorem is referenced by: decmulnc 12722 2exp8 17065 2exp16 17067 prmlem2 17096 37prm 17097 1259lem2 17108 1259lem3 17109 1259lem4 17110 1259prm 17112 2503lem1 17113 2503lem2 17114 2503prm 17116 4001lem1 17117 4001lem2 17118 4001lem3 17119 4001prm 17121 log2ublem3 26864 log2ub 26865 birthday 26870 dpmul 32839 420gcd8e4 41989 420lcm8e840 41994 3exp7 42036 3lexlogpow5ineq1 42037 3lexlogpow5ineq5 42043 aks4d1p1 42059 decpmulnc 42270 235t711 42288 ex-decpmul 42289 resqrtvalex 43627 imsqrtvalex 43628 257prm 47552 fmtno4prmfac 47563 fmtno4prmfac193 47564 fmtno4nprmfac193 47565 m11nprm 47592 2exp340mod341 47724 |
| Copyright terms: Public domain | W3C validator |