MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummul1c Structured version   Visualization version   GIF version

Theorem nummul1c 12765
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul1c.8 ((𝐴 · 𝑃) + 𝐸) = 𝐶
nummul1c.9 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul1c (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 12729 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2829 . . 3 𝑁 ∈ ℕ0
7 nummul1c.2 . . 3 𝑃 ∈ ℕ0
86, 7num0u 12727 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
9 0nn0 12524 . . 3 0 ∈ ℕ0
102, 9num0h 12728 . . 3 0 = ((𝑇 · 0) + 0)
11 nummul1c.6 . . 3 𝐷 ∈ ℕ0
12 nummul1c.7 . . 3 𝐸 ∈ ℕ0
1312nn0cni 12521 . . . . . 6 𝐸 ∈ ℂ
1413addlidi 11431 . . . . 5 (0 + 𝐸) = 𝐸
1514oveq2i 7424 . . . 4 ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸)
16 nummul1c.8 . . . 4 ((𝐴 · 𝑃) + 𝐸) = 𝐶
1715, 16eqtri 2757 . . 3 ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶
184, 7num0u 12727 . . . 4 (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0)
19 nummul1c.9 . . . 4 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
2018, 19eqtr3i 2759 . . 3 ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 12761 . 2 ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷)
228, 21eqtri 2757 1 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  (class class class)co 7413  0cc0 11137   + caddc 11140   · cmul 11142  0cn0 12509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-nn 12249  df-n0 12510
This theorem is referenced by:  nummul2c  12766  decmul1c  12781
  Copyright terms: Public domain W3C validator