MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummul1c Structured version   Visualization version   GIF version

Theorem nummul1c 12789
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul1c.8 ((𝐴 · 𝑃) + 𝐸) = 𝐶
nummul1c.9 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul1c (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 12753 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2837 . . 3 𝑁 ∈ ℕ0
7 nummul1c.2 . . 3 𝑃 ∈ ℕ0
86, 7num0u 12751 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
9 0nn0 12548 . . 3 0 ∈ ℕ0
102, 9num0h 12752 . . 3 0 = ((𝑇 · 0) + 0)
11 nummul1c.6 . . 3 𝐷 ∈ ℕ0
12 nummul1c.7 . . 3 𝐸 ∈ ℕ0
1312nn0cni 12545 . . . . . 6 𝐸 ∈ ℂ
1413addlidi 11456 . . . . 5 (0 + 𝐸) = 𝐸
1514oveq2i 7449 . . . 4 ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸)
16 nummul1c.8 . . . 4 ((𝐴 · 𝑃) + 𝐸) = 𝐶
1715, 16eqtri 2765 . . 3 ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶
184, 7num0u 12751 . . . 4 (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0)
19 nummul1c.9 . . . 4 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
2018, 19eqtr3i 2767 . . 3 ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 12785 . 2 ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷)
228, 21eqtri 2765 1 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7438  0cc0 11162   + caddc 11165   · cmul 11167  0cn0 12533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-ltxr 11307  df-sub 11501  df-nn 12274  df-n0 12534
This theorem is referenced by:  nummul2c  12790  decmul1c  12805
  Copyright terms: Public domain W3C validator