Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nummul1c | Structured version Visualization version GIF version |
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
nummul1c.8 | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
nummul1c.9 | ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
Ref | Expression |
---|---|
nummul1c | ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 12432 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2836 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
7 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
8 | 6, 7 | num0u 12430 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
9 | 0nn0 12231 | . . 3 ⊢ 0 ∈ ℕ0 | |
10 | 2, 9 | num0h 12431 | . . 3 ⊢ 0 = ((𝑇 · 0) + 0) |
11 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0cni 12228 | . . . . . 6 ⊢ 𝐸 ∈ ℂ |
14 | 13 | addid2i 11146 | . . . . 5 ⊢ (0 + 𝐸) = 𝐸 |
15 | 14 | oveq2i 7279 | . . . 4 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸) |
16 | nummul1c.8 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
17 | 15, 16 | eqtri 2767 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶 |
18 | 4, 7 | num0u 12430 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0) |
19 | nummul1c.9 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | |
20 | 18, 19 | eqtr3i 2769 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷) |
21 | 2, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20 | nummac 12464 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷) |
22 | 8, 21 | eqtri 2767 | 1 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 0cc0 10855 + caddc 10858 · cmul 10860 ℕ0cn0 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-nn 11957 df-n0 12217 |
This theorem is referenced by: nummul2c 12469 decmul1c 12484 |
Copyright terms: Public domain | W3C validator |