| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nummul1c | Structured version Visualization version GIF version | ||
| Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
| nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
| nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
| nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
| nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
| nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
| nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
| nummul1c.8 | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
| nummul1c.9 | ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
| Ref | Expression |
|---|---|
| nummul1c | ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | 2, 3, 4 | numcl 12662 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
| 6 | 1, 5 | eqeltri 2824 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
| 7 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | 6, 7 | num0u 12660 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
| 9 | 0nn0 12457 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 10 | 2, 9 | num0h 12661 | . . 3 ⊢ 0 = ((𝑇 · 0) + 0) |
| 11 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 13 | 12 | nn0cni 12454 | . . . . . 6 ⊢ 𝐸 ∈ ℂ |
| 14 | 13 | addlidi 11362 | . . . . 5 ⊢ (0 + 𝐸) = 𝐸 |
| 15 | 14 | oveq2i 7398 | . . . 4 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸) |
| 16 | nummul1c.8 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
| 17 | 15, 16 | eqtri 2752 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶 |
| 18 | 4, 7 | num0u 12660 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0) |
| 19 | nummul1c.9 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | |
| 20 | 18, 19 | eqtr3i 2754 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷) |
| 21 | 2, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20 | nummac 12694 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷) |
| 22 | 8, 21 | eqtri 2752 | 1 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 0cc0 11068 + caddc 11071 · cmul 11073 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: nummul2c 12699 decmul1c 12714 |
| Copyright terms: Public domain | W3C validator |