![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nummul1c | Structured version Visualization version GIF version |
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
nummul1c.8 | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
nummul1c.9 | ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
Ref | Expression |
---|---|
nummul1c | ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 12773 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2840 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
7 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
8 | 6, 7 | num0u 12771 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
9 | 0nn0 12570 | . . 3 ⊢ 0 ∈ ℕ0 | |
10 | 2, 9 | num0h 12772 | . . 3 ⊢ 0 = ((𝑇 · 0) + 0) |
11 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0cni 12567 | . . . . . 6 ⊢ 𝐸 ∈ ℂ |
14 | 13 | addlidi 11480 | . . . . 5 ⊢ (0 + 𝐸) = 𝐸 |
15 | 14 | oveq2i 7461 | . . . 4 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸) |
16 | nummul1c.8 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
17 | 15, 16 | eqtri 2768 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶 |
18 | 4, 7 | num0u 12771 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0) |
19 | nummul1c.9 | . . . 4 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) | |
20 | 18, 19 | eqtr3i 2770 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷) |
21 | 2, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20 | nummac 12805 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷) |
22 | 8, 21 | eqtri 2768 | 1 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7450 0cc0 11186 + caddc 11189 · cmul 11191 ℕ0cn0 12555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-ltxr 11331 df-sub 11524 df-nn 12296 df-n0 12556 |
This theorem is referenced by: nummul2c 12810 decmul1c 12825 |
Copyright terms: Public domain | W3C validator |