MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummul1c Structured version   Visualization version   GIF version

Theorem nummul1c 12468
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul1c.8 ((𝐴 · 𝑃) + 𝐸) = 𝐶
nummul1c.9 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul1c (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 12432 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2836 . . 3 𝑁 ∈ ℕ0
7 nummul1c.2 . . 3 𝑃 ∈ ℕ0
86, 7num0u 12430 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
9 0nn0 12231 . . 3 0 ∈ ℕ0
102, 9num0h 12431 . . 3 0 = ((𝑇 · 0) + 0)
11 nummul1c.6 . . 3 𝐷 ∈ ℕ0
12 nummul1c.7 . . 3 𝐸 ∈ ℕ0
1312nn0cni 12228 . . . . . 6 𝐸 ∈ ℂ
1413addid2i 11146 . . . . 5 (0 + 𝐸) = 𝐸
1514oveq2i 7279 . . . 4 ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸)
16 nummul1c.8 . . . 4 ((𝐴 · 𝑃) + 𝐸) = 𝐶
1715, 16eqtri 2767 . . 3 ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶
184, 7num0u 12430 . . . 4 (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0)
19 nummul1c.9 . . . 4 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
2018, 19eqtr3i 2769 . . 3 ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 12464 . 2 ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷)
228, 21eqtri 2767 1 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  (class class class)co 7268  0cc0 10855   + caddc 10858   · cmul 10860  0cn0 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-nn 11957  df-n0 12217
This theorem is referenced by:  nummul2c  12469  decmul1c  12484
  Copyright terms: Public domain W3C validator