Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dih0rn | Structured version Visualization version GIF version |
Description: The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
Ref | Expression |
---|---|
dih0rn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dih0rn.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dih0rn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dih0rn.o | ⊢ 0 = (0g‘𝑈) |
Ref | Expression |
---|---|
dih0rn | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → { 0 } ∈ ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
2 | dih0rn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dih0rn.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
4 | dih0rn.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dih0rn.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dih0 38940 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) |
7 | eqid 2739 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 2, 3 | dihfn 38928 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn (Base‘𝐾)) |
9 | hlop 37022 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | 9 | adantr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
11 | 7, 1 | op0cl 36844 | . . . 4 ⊢ (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾)) |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0.‘𝐾) ∈ (Base‘𝐾)) |
13 | fnfvelrn 6861 | . . 3 ⊢ ((𝐼 Fn (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) → (𝐼‘(0.‘𝐾)) ∈ ran 𝐼) | |
14 | 8, 12, 13 | syl2anc 587 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) ∈ ran 𝐼) |
15 | 6, 14 | eqeltrrd 2835 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → { 0 } ∈ ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {csn 4517 ran crn 5527 Fn wfn 6335 ‘cfv 6340 Basecbs 16589 0gc0g 16819 0.cp0 17766 OPcops 36832 HLchlt 37010 LHypclh 37644 DVecHcdvh 38738 DIsoHcdih 38888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-riotaBAD 36613 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-tpos 7924 df-undef 7971 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-map 8442 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-n0 11980 df-z 12066 df-uz 12328 df-fz 12985 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-sca 16687 df-vsca 16688 df-0g 16821 df-proset 17657 df-poset 17675 df-plt 17687 df-lub 17703 df-glb 17704 df-join 17705 df-meet 17706 df-p0 17768 df-p1 17769 df-lat 17775 df-clat 17837 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-submnd 18076 df-grp 18225 df-minusg 18226 df-sbg 18227 df-subg 18397 df-cntz 18568 df-lsm 18882 df-cmn 19029 df-abl 19030 df-mgp 19362 df-ur 19374 df-ring 19421 df-oppr 19498 df-dvdsr 19516 df-unit 19517 df-invr 19547 df-dvr 19558 df-drng 19626 df-lmod 19758 df-lss 19826 df-lsp 19866 df-lvec 19997 df-oposet 36836 df-ol 36838 df-oml 36839 df-covers 36926 df-ats 36927 df-atl 36958 df-cvlat 36982 df-hlat 37011 df-llines 37158 df-lplanes 37159 df-lvols 37160 df-lines 37161 df-psubsp 37163 df-pmap 37164 df-padd 37456 df-lhyp 37648 df-laut 37649 df-ldil 37764 df-ltrn 37765 df-trl 37819 df-tendo 38415 df-edring 38417 df-disoa 38689 df-dvech 38739 df-dib 38799 df-dic 38833 df-dih 38889 |
This theorem is referenced by: dih0sb 38945 dihlsprn 38991 doch0 39018 djh01 39072 djh02 39073 dochsatshp 39111 dochshpsat 39114 |
Copyright terms: Public domain | W3C validator |