![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pco0 | Structured version Visualization version GIF version |
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco0 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | 0le0 12394 | . . . 4 ⊢ 0 ≤ 0 | |
3 | halfge0 12510 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
4 | halfre 12507 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
5 | 1, 4 | elicc2i 13473 | . . . 4 ⊢ (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2))) |
6 | 1, 2, 3, 5 | mpbir3an 1341 | . . 3 ⊢ 0 ∈ (0[,](1 / 2)) |
7 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
8 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
9 | 7, 8 | pcoval1 25065 | . . 3 ⊢ ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
10 | 6, 9 | mpan2 690 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
11 | 2t0e0 12462 | . . 3 ⊢ (2 · 0) = 0 | |
12 | 11 | fveq2i 6923 | . 2 ⊢ (𝐹‘(2 · 0)) = (𝐹‘0) |
13 | 10, 12 | eqtrdi 2796 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 ≤ cle 11325 / cdiv 11947 2c2 12348 [,]cicc 13410 Cn ccn 23253 IIcii 24920 *𝑝cpco 25052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-icc 13414 df-top 22921 df-topon 22938 df-cn 23256 df-pco 25057 |
This theorem is referenced by: pcohtpylem 25071 pcoass 25076 pcorevlem 25078 pcophtb 25081 om1addcl 25085 pi1xfrf 25105 pi1xfr 25107 pi1xfrcnvlem 25108 pi1coghm 25113 connpconn 35203 sconnpht2 35206 cvmlift3lem6 35292 |
Copyright terms: Public domain | W3C validator |