MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco0 Structured version   Visualization version   GIF version

Theorem pco0 24939
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco0 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))

Proof of Theorem pco0
StepHypRef Expression
1 0re 11111 . . . 4 0 ∈ ℝ
2 0le0 12223 . . . 4 0 ≤ 0
3 halfge0 12334 . . . 4 0 ≤ (1 / 2)
4 halfre 12331 . . . . 5 (1 / 2) ∈ ℝ
51, 4elicc2i 13309 . . . 4 (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2)))
61, 2, 3, 5mpbir3an 1342 . . 3 0 ∈ (0[,](1 / 2))
7 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
8 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
97, 8pcoval1 24938 . . 3 ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘(2 · 0)))
106, 9mpan2 691 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘(2 · 0)))
11 2t0e0 12286 . . 3 (2 · 0) = 0
1211fveq2i 6825 . 2 (𝐹‘(2 · 0)) = (𝐹‘0)
1310, 12eqtrdi 2782 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   · cmul 11008  cle 11144   / cdiv 11771  2c2 12177  [,]cicc 13245   Cn ccn 23137  IIcii 24793  *𝑝cpco 24925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-icc 13249  df-top 22807  df-topon 22824  df-cn 23140  df-pco 24930
This theorem is referenced by:  pcohtpylem  24944  pcoass  24949  pcorevlem  24951  pcophtb  24954  om1addcl  24958  pi1xfrf  24978  pi1xfr  24980  pi1xfrcnvlem  24981  pi1coghm  24986  connpconn  35267  sconnpht2  35270  cvmlift3lem6  35356
  Copyright terms: Public domain W3C validator