MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco0 Structured version   Visualization version   GIF version

Theorem pco0 25066
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco0 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))

Proof of Theorem pco0
StepHypRef Expression
1 0re 11292 . . . 4 0 ∈ ℝ
2 0le0 12394 . . . 4 0 ≤ 0
3 halfge0 12510 . . . 4 0 ≤ (1 / 2)
4 halfre 12507 . . . . 5 (1 / 2) ∈ ℝ
51, 4elicc2i 13473 . . . 4 (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2)))
61, 2, 3, 5mpbir3an 1341 . . 3 0 ∈ (0[,](1 / 2))
7 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
8 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
97, 8pcoval1 25065 . . 3 ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘(2 · 0)))
106, 9mpan2 690 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘(2 · 0)))
11 2t0e0 12462 . . 3 (2 · 0) = 0
1211fveq2i 6923 . 2 (𝐹‘(2 · 0)) = (𝐹‘0)
1310, 12eqtrdi 2796 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325   / cdiv 11947  2c2 12348  [,]cicc 13410   Cn ccn 23253  IIcii 24920  *𝑝cpco 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-icc 13414  df-top 22921  df-topon 22938  df-cn 23256  df-pco 25057
This theorem is referenced by:  pcohtpylem  25071  pcoass  25076  pcorevlem  25078  pcophtb  25081  om1addcl  25085  pi1xfrf  25105  pi1xfr  25107  pi1xfrcnvlem  25108  pi1coghm  25113  connpconn  35203  sconnpht2  35206  cvmlift3lem6  35292
  Copyright terms: Public domain W3C validator