Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pco0 | Structured version Visualization version GIF version |
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco0 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | 0le0 12074 | . . . 4 ⊢ 0 ≤ 0 | |
3 | halfge0 12190 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
4 | halfre 12187 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
5 | 1, 4 | elicc2i 13145 | . . . 4 ⊢ (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2))) |
6 | 1, 2, 3, 5 | mpbir3an 1340 | . . 3 ⊢ 0 ∈ (0[,](1 / 2)) |
7 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
8 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
9 | 7, 8 | pcoval1 24176 | . . 3 ⊢ ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
10 | 6, 9 | mpan2 688 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
11 | 2t0e0 12142 | . . 3 ⊢ (2 · 0) = 0 | |
12 | 11 | fveq2i 6777 | . 2 ⊢ (𝐹‘(2 · 0)) = (𝐹‘0) |
13 | 10, 12 | eqtrdi 2794 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 ≤ cle 11010 / cdiv 11632 2c2 12028 [,]cicc 13082 Cn ccn 22375 IIcii 24038 *𝑝cpco 24163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-icc 13086 df-top 22043 df-topon 22060 df-cn 22378 df-pco 24168 |
This theorem is referenced by: pcohtpylem 24182 pcoass 24187 pcorevlem 24189 pcophtb 24192 om1addcl 24196 pi1xfrf 24216 pi1xfr 24218 pi1xfrcnvlem 24219 pi1coghm 24224 connpconn 33197 sconnpht2 33200 cvmlift3lem6 33286 |
Copyright terms: Public domain | W3C validator |