![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pco0 | Structured version Visualization version GIF version |
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco0 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10378 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | 0le0 11483 | . . . 4 ⊢ 0 ≤ 0 | |
3 | halfre 11596 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | halfgt0 11598 | . . . . 5 ⊢ 0 < (1 / 2) | |
5 | 1, 3, 4 | ltleii 10499 | . . . 4 ⊢ 0 ≤ (1 / 2) |
6 | 1, 3 | elicc2i 12551 | . . . 4 ⊢ (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2))) |
7 | 1, 2, 5, 6 | mpbir3an 1398 | . . 3 ⊢ 0 ∈ (0[,](1 / 2)) |
8 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
9 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
10 | 8, 9 | pcoval1 23220 | . . 3 ⊢ ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
11 | 7, 10 | mpan2 681 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
12 | 2t0e0 11551 | . . 3 ⊢ (2 · 0) = 0 | |
13 | 12 | fveq2i 6449 | . 2 ⊢ (𝐹‘(2 · 0)) = (𝐹‘0) |
14 | 11, 13 | syl6eq 2829 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 1c1 10273 · cmul 10277 ≤ cle 10412 / cdiv 11032 2c2 11430 [,]cicc 12490 Cn ccn 21436 IIcii 23086 *𝑝cpco 23207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-2 11438 df-icc 12494 df-top 21106 df-topon 21123 df-cn 21439 df-pco 23212 |
This theorem is referenced by: pcohtpylem 23226 pcoass 23231 pcorevlem 23233 pcophtb 23236 om1addcl 23240 pi1xfrf 23260 pi1xfr 23262 pi1xfrcnvlem 23263 pi1coghm 23268 connpconn 31816 sconnpht2 31819 cvmlift3lem6 31905 |
Copyright terms: Public domain | W3C validator |