![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pco0 | Structured version Visualization version GIF version |
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | โข (๐ โ ๐น โ (II Cn ๐ฝ)) |
pcoval.3 | โข (๐ โ ๐บ โ (II Cn ๐ฝ)) |
Ref | Expression |
---|---|
pco0 | โข (๐ โ ((๐น(*๐โ๐ฝ)๐บ)โ0) = (๐นโ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11218 | . . . 4 โข 0 โ โ | |
2 | 0le0 12315 | . . . 4 โข 0 โค 0 | |
3 | halfge0 12431 | . . . 4 โข 0 โค (1 / 2) | |
4 | halfre 12428 | . . . . 5 โข (1 / 2) โ โ | |
5 | 1, 4 | elicc2i 13392 | . . . 4 โข (0 โ (0[,](1 / 2)) โ (0 โ โ โง 0 โค 0 โง 0 โค (1 / 2))) |
6 | 1, 2, 3, 5 | mpbir3an 1341 | . . 3 โข 0 โ (0[,](1 / 2)) |
7 | pcoval.2 | . . . 4 โข (๐ โ ๐น โ (II Cn ๐ฝ)) | |
8 | pcoval.3 | . . . 4 โข (๐ โ ๐บ โ (II Cn ๐ฝ)) | |
9 | 7, 8 | pcoval1 24536 | . . 3 โข ((๐ โง 0 โ (0[,](1 / 2))) โ ((๐น(*๐โ๐ฝ)๐บ)โ0) = (๐นโ(2 ยท 0))) |
10 | 6, 9 | mpan2 689 | . 2 โข (๐ โ ((๐น(*๐โ๐ฝ)๐บ)โ0) = (๐นโ(2 ยท 0))) |
11 | 2t0e0 12383 | . . 3 โข (2 ยท 0) = 0 | |
12 | 11 | fveq2i 6894 | . 2 โข (๐นโ(2 ยท 0)) = (๐นโ0) |
13 | 10, 12 | eqtrdi 2788 | 1 โข (๐ โ ((๐น(*๐โ๐ฝ)๐บ)โ0) = (๐นโ0)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 class class class wbr 5148 โcfv 6543 (class class class)co 7411 โcr 11111 0cc0 11112 1c1 11113 ยท cmul 11117 โค cle 11251 / cdiv 11873 2c2 12269 [,]cicc 13329 Cn ccn 22735 IIcii 24398 *๐cpco 24523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-2 12277 df-icc 13333 df-top 22403 df-topon 22420 df-cn 22738 df-pco 24528 |
This theorem is referenced by: pcohtpylem 24542 pcoass 24547 pcorevlem 24549 pcophtb 24552 om1addcl 24556 pi1xfrf 24576 pi1xfr 24578 pi1xfrcnvlem 24579 pi1coghm 24584 connpconn 34295 sconnpht2 34298 cvmlift3lem6 34384 |
Copyright terms: Public domain | W3C validator |