Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pco0 | Structured version Visualization version GIF version |
Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco0 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10835 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | 0le0 11931 | . . . 4 ⊢ 0 ≤ 0 | |
3 | halfge0 12047 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
4 | halfre 12044 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
5 | 1, 4 | elicc2i 13001 | . . . 4 ⊢ (0 ∈ (0[,](1 / 2)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ (1 / 2))) |
6 | 1, 2, 3, 5 | mpbir3an 1343 | . . 3 ⊢ 0 ∈ (0[,](1 / 2)) |
7 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
8 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
9 | 7, 8 | pcoval1 23910 | . . 3 ⊢ ((𝜑 ∧ 0 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
10 | 6, 9 | mpan2 691 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘(2 · 0))) |
11 | 2t0e0 11999 | . . 3 ⊢ (2 · 0) = 0 | |
12 | 11 | fveq2i 6720 | . 2 ⊢ (𝐹‘(2 · 0)) = (𝐹‘0) |
13 | 10, 12 | eqtrdi 2794 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 · cmul 10734 ≤ cle 10868 / cdiv 11489 2c2 11885 [,]cicc 12938 Cn ccn 22121 IIcii 23772 *𝑝cpco 23897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-icc 12942 df-top 21791 df-topon 21808 df-cn 22124 df-pco 23902 |
This theorem is referenced by: pcohtpylem 23916 pcoass 23921 pcorevlem 23923 pcophtb 23926 om1addcl 23930 pi1xfrf 23950 pi1xfr 23952 pi1xfrcnvlem 23953 pi1coghm 23958 connpconn 32910 sconnpht2 32913 cvmlift3lem6 32999 |
Copyright terms: Public domain | W3C validator |