Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version |
Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
2 | rpne0 12746 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
4 | simpr 485 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | rpssre 12737 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
6 | ax-resscn 10928 | . . . 4 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 3930 | . . 3 ⊢ ℝ+ ⊆ ℂ |
8 | rpmulcl 12753 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
9 | 1rp 12734 | . . 3 ⊢ 1 ∈ ℝ+ | |
10 | rpreccl 12756 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
12 | 7, 8, 9, 11 | expcl2lem 13794 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
13 | 1, 3, 4, 12 | syl3anc 1370 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 / cdiv 11632 ℤcz 12319 ℝ+crp 12730 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 |
This theorem is referenced by: expgt0 13816 ltexp2a 13884 expcan 13887 ltexp2 13888 leexp2a 13890 ltexp2r 13891 expnlbnd2 13949 rpexpcld 13962 expcnv 15576 effsumlt 15820 ef01bndlem 15893 rpnnen2lem11 15933 iscmet3lem3 24454 iscmet3lem1 24455 iscmet3lem2 24456 iscmet3 24457 minveclem3 24593 pjthlem1 24601 aaliou3lem1 25502 aaliou3lem2 25503 aaliou3lem3 25504 aaliou3lem8 25505 aaliou3lem5 25507 aaliou3lem6 25508 aaliou3lem7 25509 aaliou3lem9 25510 tanregt0 25695 asinlem3 26021 cxp2limlem 26125 ftalem5 26226 basellem3 26232 basellem4 26233 basellem8 26237 chebbnd1lem3 26619 dchrisum0lem1a 26634 dchrisum0lem1b 26663 dchrisum0lem1 26664 dchrisum0lem2a 26665 dchrisum0lem2 26666 dchrisum0lem3 26667 pntlemd 26742 pntlema 26744 pntlemb 26745 pntlemh 26747 pntlemr 26750 pntlemi 26752 pntlemf 26753 pntlemo 26755 pntlem3 26757 pntleml 26759 ostth2lem1 26766 ostth3 26786 minvecolem3 29238 pjhthlem1 29753 dpexpp1 31182 dya2icoseg 32244 faclimlem3 33711 geomcau 35917 dignnld 45949 |
Copyright terms: Public domain | W3C validator |