MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcl Structured version   Visualization version   GIF version

Theorem rpexpcl 14103
Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
rpexpcl ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+)
2 rpne0 13033 . . 3 (𝐴 ∈ ℝ+𝐴 ≠ 0)
32adantr 480 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ≠ 0)
4 simpr 484 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
5 rpssre 13024 . . . 4 + ⊆ ℝ
6 ax-resscn 11194 . . . 4 ℝ ⊆ ℂ
75, 6sstri 3973 . . 3 + ⊆ ℂ
8 rpmulcl 13040 . . 3 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9 1rp 13020 . . 3 1 ∈ ℝ+
10 rpreccl 13043 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1110adantr 480 . . 3 ((𝑥 ∈ ℝ+𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+)
127, 8, 9, 11expcl2lem 14096 . 2 ((𝐴 ∈ ℝ+𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
131, 3, 4, 12syl3anc 1372 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wne 2931  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   / cdiv 11902  cz 12596  +crp 13016  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085
This theorem is referenced by:  expgt0  14118  ltexp2a  14189  expcan  14192  ltexp2  14193  leexp2a  14195  ltexp2r  14196  expnlbnd2  14256  rpexpcld  14269  expcnv  15883  effsumlt  16130  ef01bndlem  16203  rpnnen2lem11  16243  iscmet3lem3  25261  iscmet3lem1  25262  iscmet3lem2  25263  iscmet3  25264  minveclem3  25400  pjthlem1  25408  aaliou3lem1  26321  aaliou3lem2  26322  aaliou3lem3  26323  aaliou3lem8  26324  aaliou3lem5  26326  aaliou3lem6  26327  aaliou3lem7  26328  aaliou3lem9  26329  tanregt0  26518  asinlem3  26851  cxp2limlem  26956  ftalem5  27057  basellem3  27063  basellem4  27064  basellem8  27068  chebbnd1lem3  27452  dchrisum0lem1a  27467  dchrisum0lem1b  27496  dchrisum0lem1  27497  dchrisum0lem2a  27498  dchrisum0lem2  27499  dchrisum0lem3  27500  pntlemd  27575  pntlema  27577  pntlemb  27578  pntlemh  27580  pntlemr  27583  pntlemi  27585  pntlemf  27586  pntlemo  27588  pntlem3  27590  pntleml  27592  ostth2lem1  27599  ostth3  27619  minvecolem3  30824  pjhthlem1  31339  dpexpp1  32835  dya2icoseg  34254  faclimlem3  35720  geomcau  37741  dignnld  48497
  Copyright terms: Public domain W3C validator