MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcl Structured version   Visualization version   GIF version

Theorem rpexpcl 13729
Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
rpexpcl ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+)
2 rpne0 12675 . . 3 (𝐴 ∈ ℝ+𝐴 ≠ 0)
32adantr 480 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ≠ 0)
4 simpr 484 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
5 rpssre 12666 . . . 4 + ⊆ ℝ
6 ax-resscn 10859 . . . 4 ℝ ⊆ ℂ
75, 6sstri 3926 . . 3 + ⊆ ℂ
8 rpmulcl 12682 . . 3 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9 1rp 12663 . . 3 1 ∈ ℝ+
10 rpreccl 12685 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1110adantr 480 . . 3 ((𝑥 ∈ ℝ+𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+)
127, 8, 9, 11expcl2lem 13722 . 2 ((𝐴 ∈ ℝ+𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
131, 3, 4, 12syl3anc 1369 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   / cdiv 11562  cz 12249  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  expgt0  13744  ltexp2a  13812  expcan  13815  ltexp2  13816  leexp2a  13818  ltexp2r  13819  expnlbnd2  13877  rpexpcld  13890  expcnv  15504  effsumlt  15748  ef01bndlem  15821  rpnnen2lem11  15861  iscmet3lem3  24359  iscmet3lem1  24360  iscmet3lem2  24361  iscmet3  24362  minveclem3  24498  pjthlem1  24506  aaliou3lem1  25407  aaliou3lem2  25408  aaliou3lem3  25409  aaliou3lem8  25410  aaliou3lem5  25412  aaliou3lem6  25413  aaliou3lem7  25414  aaliou3lem9  25415  tanregt0  25600  asinlem3  25926  cxp2limlem  26030  ftalem5  26131  basellem3  26137  basellem4  26138  basellem8  26142  chebbnd1lem3  26524  dchrisum0lem1a  26539  dchrisum0lem1b  26568  dchrisum0lem1  26569  dchrisum0lem2a  26570  dchrisum0lem2  26571  dchrisum0lem3  26572  pntlemd  26647  pntlema  26649  pntlemb  26650  pntlemh  26652  pntlemr  26655  pntlemi  26657  pntlemf  26658  pntlemo  26660  pntlem3  26662  pntleml  26664  ostth2lem1  26671  ostth3  26691  minvecolem3  29139  pjhthlem1  29654  dpexpp1  31084  dya2icoseg  32144  faclimlem3  33617  geomcau  35844  dignnld  45837
  Copyright terms: Public domain W3C validator