| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version | ||
| Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
| 2 | rpne0 13033 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
| 4 | simpr 484 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 5 | rpssre 13024 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn 11194 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3973 | . . 3 ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl 13040 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 9 | 1rp 13020 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl 13043 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
| 12 | 7, 8, 9, 11 | expcl2lem 14096 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| 13 | 1, 3, 4, 12 | syl3anc 1372 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 / cdiv 11902 ℤcz 12596 ℝ+crp 13016 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: expgt0 14118 ltexp2a 14189 expcan 14192 ltexp2 14193 leexp2a 14195 ltexp2r 14196 expnlbnd2 14256 rpexpcld 14269 expcnv 15883 effsumlt 16130 ef01bndlem 16203 rpnnen2lem11 16243 iscmet3lem3 25261 iscmet3lem1 25262 iscmet3lem2 25263 iscmet3 25264 minveclem3 25400 pjthlem1 25408 aaliou3lem1 26321 aaliou3lem2 26322 aaliou3lem3 26323 aaliou3lem8 26324 aaliou3lem5 26326 aaliou3lem6 26327 aaliou3lem7 26328 aaliou3lem9 26329 tanregt0 26518 asinlem3 26851 cxp2limlem 26956 ftalem5 27057 basellem3 27063 basellem4 27064 basellem8 27068 chebbnd1lem3 27452 dchrisum0lem1a 27467 dchrisum0lem1b 27496 dchrisum0lem1 27497 dchrisum0lem2a 27498 dchrisum0lem2 27499 dchrisum0lem3 27500 pntlemd 27575 pntlema 27577 pntlemb 27578 pntlemh 27580 pntlemr 27583 pntlemi 27585 pntlemf 27586 pntlemo 27588 pntlem3 27590 pntleml 27592 ostth2lem1 27599 ostth3 27619 minvecolem3 30824 pjhthlem1 31339 dpexpp1 32835 dya2icoseg 34254 faclimlem3 35720 geomcau 37741 dignnld 48497 |
| Copyright terms: Public domain | W3C validator |