| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version | ||
| Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
| 2 | rpne0 12974 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
| 4 | simpr 484 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 5 | rpssre 12965 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn 11131 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3958 | . . 3 ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl 12982 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 9 | 1rp 12961 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl 12985 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
| 12 | 7, 8, 9, 11 | expcl2lem 14044 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| 13 | 1, 3, 4, 12 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 / cdiv 11841 ℤcz 12535 ℝ+crp 12957 ↑cexp 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 |
| This theorem is referenced by: expgt0 14066 ltexp2a 14137 expcan 14140 ltexp2 14141 leexp2a 14143 ltexp2r 14144 expnlbnd2 14205 rpexpcld 14218 expcnv 15836 effsumlt 16085 ef01bndlem 16158 rpnnen2lem11 16198 iscmet3lem3 25196 iscmet3lem1 25197 iscmet3lem2 25198 iscmet3 25199 minveclem3 25335 pjthlem1 25343 aaliou3lem1 26256 aaliou3lem2 26257 aaliou3lem3 26258 aaliou3lem8 26259 aaliou3lem5 26261 aaliou3lem6 26262 aaliou3lem7 26263 aaliou3lem9 26264 tanregt0 26454 asinlem3 26787 cxp2limlem 26892 ftalem5 26993 basellem3 26999 basellem4 27000 basellem8 27004 chebbnd1lem3 27388 dchrisum0lem1a 27403 dchrisum0lem1b 27432 dchrisum0lem1 27433 dchrisum0lem2a 27434 dchrisum0lem2 27435 dchrisum0lem3 27436 pntlemd 27511 pntlema 27513 pntlemb 27514 pntlemh 27516 pntlemr 27519 pntlemi 27521 pntlemf 27522 pntlemo 27524 pntlem3 27526 pntleml 27528 ostth2lem1 27535 ostth3 27555 minvecolem3 30811 pjhthlem1 31326 dpexpp1 32834 dya2icoseg 34274 faclimlem3 35727 geomcau 37748 dignnld 48582 |
| Copyright terms: Public domain | W3C validator |