MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcl Structured version   Visualization version   GIF version

Theorem rpexpcl 13449
Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
rpexpcl ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+)
2 rpne0 12406 . . 3 (𝐴 ∈ ℝ+𝐴 ≠ 0)
32adantr 483 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝐴 ≠ 0)
4 simpr 487 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
5 rpssre 12397 . . . 4 + ⊆ ℝ
6 ax-resscn 10594 . . . 4 ℝ ⊆ ℂ
75, 6sstri 3976 . . 3 + ⊆ ℂ
8 rpmulcl 12413 . . 3 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+)
9 1rp 12394 . . 3 1 ∈ ℝ+
10 rpreccl 12416 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1110adantr 483 . . 3 ((𝑥 ∈ ℝ+𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+)
127, 8, 9, 11expcl2lem 13442 . 2 ((𝐴 ∈ ℝ+𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
131, 3, 4, 12syl3anc 1367 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wne 3016  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   / cdiv 11297  cz 11982  +crp 12390  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431
This theorem is referenced by:  expgt0  13463  ltexp2a  13531  expcan  13534  ltexp2  13535  leexp2a  13537  ltexp2r  13538  expnlbnd2  13596  rpexpcld  13609  expcnv  15219  effsumlt  15464  ef01bndlem  15537  rpnnen2lem11  15577  iscmet3lem3  23893  iscmet3lem1  23894  iscmet3lem2  23895  iscmet3  23896  minveclem3  24032  pjthlem1  24040  aaliou3lem1  24931  aaliou3lem2  24932  aaliou3lem3  24933  aaliou3lem8  24934  aaliou3lem5  24936  aaliou3lem6  24937  aaliou3lem7  24938  aaliou3lem9  24939  tanregt0  25123  asinlem3  25449  cxp2limlem  25553  ftalem5  25654  basellem3  25660  basellem4  25661  basellem8  25665  chebbnd1lem3  26047  dchrisum0lem1a  26062  dchrisum0lem1b  26091  dchrisum0lem1  26092  dchrisum0lem2a  26093  dchrisum0lem2  26094  dchrisum0lem3  26095  pntlemd  26170  pntlema  26172  pntlemb  26173  pntlemh  26175  pntlemr  26178  pntlemi  26180  pntlemf  26181  pntlemo  26183  pntlem3  26185  pntleml  26187  ostth2lem1  26194  ostth3  26214  minvecolem3  28653  pjhthlem1  29168  dpexpp1  30584  dya2icoseg  31535  faclimlem3  32977  geomcau  35049  dignnld  44712
  Copyright terms: Public domain W3C validator