| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version | ||
| Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
| 2 | rpne0 13023 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
| 4 | simpr 484 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 5 | rpssre 13014 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn 11184 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3968 | . . 3 ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl 13030 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 9 | 1rp 13010 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl 13033 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
| 12 | 7, 8, 9, 11 | expcl2lem 14089 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| 13 | 1, 3, 4, 12 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 / cdiv 11892 ℤcz 12586 ℝ+crp 13006 ↑cexp 14077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 |
| This theorem is referenced by: expgt0 14111 ltexp2a 14182 expcan 14185 ltexp2 14186 leexp2a 14188 ltexp2r 14189 expnlbnd2 14250 rpexpcld 14263 expcnv 15878 effsumlt 16127 ef01bndlem 16200 rpnnen2lem11 16240 iscmet3lem3 25240 iscmet3lem1 25241 iscmet3lem2 25242 iscmet3 25243 minveclem3 25379 pjthlem1 25387 aaliou3lem1 26300 aaliou3lem2 26301 aaliou3lem3 26302 aaliou3lem8 26303 aaliou3lem5 26305 aaliou3lem6 26306 aaliou3lem7 26307 aaliou3lem9 26308 tanregt0 26498 asinlem3 26831 cxp2limlem 26936 ftalem5 27037 basellem3 27043 basellem4 27044 basellem8 27048 chebbnd1lem3 27432 dchrisum0lem1a 27447 dchrisum0lem1b 27476 dchrisum0lem1 27477 dchrisum0lem2a 27478 dchrisum0lem2 27479 dchrisum0lem3 27480 pntlemd 27555 pntlema 27557 pntlemb 27558 pntlemh 27560 pntlemr 27563 pntlemi 27565 pntlemf 27566 pntlemo 27568 pntlem3 27570 pntleml 27572 ostth2lem1 27579 ostth3 27599 minvecolem3 30803 pjhthlem1 31318 dpexpp1 32828 dya2icoseg 34255 faclimlem3 35708 geomcau 37729 dignnld 48531 |
| Copyright terms: Public domain | W3C validator |