| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version | ||
| Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
| 2 | rpne0 12913 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
| 4 | simpr 484 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 5 | rpssre 12904 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn 11069 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3939 | . . 3 ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl 12921 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
| 9 | 1rp 12900 | . . 3 ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl 12924 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
| 12 | 7, 8, 9, 11 | expcl2lem 13986 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| 13 | 1, 3, 4, 12 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 1c1 11013 / cdiv 11780 ℤcz 12474 ℝ+crp 12896 ↑cexp 13974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-seq 13915 df-exp 13975 |
| This theorem is referenced by: expgt0 14008 ltexp2a 14079 expcan 14082 ltexp2 14083 leexp2a 14085 ltexp2r 14086 expnlbnd2 14147 rpexpcld 14160 expcnv 15777 effsumlt 16026 ef01bndlem 16099 rpnnen2lem11 16139 iscmet3lem3 25223 iscmet3lem1 25224 iscmet3lem2 25225 iscmet3 25226 minveclem3 25362 pjthlem1 25370 aaliou3lem1 26283 aaliou3lem2 26284 aaliou3lem3 26285 aaliou3lem8 26286 aaliou3lem5 26288 aaliou3lem6 26289 aaliou3lem7 26290 aaliou3lem9 26291 tanregt0 26481 asinlem3 26814 cxp2limlem 26919 ftalem5 27020 basellem3 27026 basellem4 27027 basellem8 27031 chebbnd1lem3 27415 dchrisum0lem1a 27430 dchrisum0lem1b 27459 dchrisum0lem1 27460 dchrisum0lem2a 27461 dchrisum0lem2 27462 dchrisum0lem3 27463 pntlemd 27538 pntlema 27540 pntlemb 27541 pntlemh 27543 pntlemr 27546 pntlemi 27548 pntlemf 27549 pntlemo 27551 pntlem3 27553 pntleml 27555 ostth2lem1 27562 ostth3 27582 minvecolem3 30863 pjhthlem1 31378 dpexpp1 32895 dya2icoseg 34297 faclimlem3 35796 geomcau 37805 dignnld 48709 |
| Copyright terms: Public domain | W3C validator |