Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version |
Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
2 | rpne0 12856 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 2 | adantr 482 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
4 | simpr 486 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | rpssre 12847 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
6 | ax-resscn 11038 | . . . 4 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 3948 | . . 3 ⊢ ℝ+ ⊆ ℂ |
8 | rpmulcl 12863 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
9 | 1rp 12844 | . . 3 ⊢ 1 ∈ ℝ+ | |
10 | rpreccl 12866 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
11 | 10 | adantr 482 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
12 | 7, 8, 9, 11 | expcl2lem 13904 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
13 | 1, 3, 4, 12 | syl3anc 1371 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 ≠ wne 2941 (class class class)co 7346 ℂcc 10979 ℝcr 10980 0cc0 10981 1c1 10982 / cdiv 11742 ℤcz 12429 ℝ+crp 12840 ↑cexp 13892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-seq 13832 df-exp 13893 |
This theorem is referenced by: expgt0 13926 ltexp2a 13994 expcan 13997 ltexp2 13998 leexp2a 14000 ltexp2r 14001 expnlbnd2 14059 rpexpcld 14072 expcnv 15680 effsumlt 15924 ef01bndlem 15997 rpnnen2lem11 16037 iscmet3lem3 24564 iscmet3lem1 24565 iscmet3lem2 24566 iscmet3 24567 minveclem3 24703 pjthlem1 24711 aaliou3lem1 25612 aaliou3lem2 25613 aaliou3lem3 25614 aaliou3lem8 25615 aaliou3lem5 25617 aaliou3lem6 25618 aaliou3lem7 25619 aaliou3lem9 25620 tanregt0 25805 asinlem3 26131 cxp2limlem 26235 ftalem5 26336 basellem3 26342 basellem4 26343 basellem8 26347 chebbnd1lem3 26729 dchrisum0lem1a 26744 dchrisum0lem1b 26773 dchrisum0lem1 26774 dchrisum0lem2a 26775 dchrisum0lem2 26776 dchrisum0lem3 26777 pntlemd 26852 pntlema 26854 pntlemb 26855 pntlemh 26857 pntlemr 26860 pntlemi 26862 pntlemf 26863 pntlemo 26865 pntlem3 26867 pntleml 26869 ostth2lem1 26876 ostth3 26896 minvecolem3 29592 pjhthlem1 30107 dpexpp1 31533 dya2icoseg 32608 faclimlem3 34066 geomcau 36073 dignnld 46367 |
Copyright terms: Public domain | W3C validator |