![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsqrtsumo1 | Structured version Visualization version GIF version |
Description: The sum Ξ£π β€ π₯(1 / βπ) has the asymptotic expansion 2βπ₯ + πΏ + π(1 / βπ₯), for some πΏ. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
divsqrtsum.2 | β’ πΉ = (π₯ β β+ β¦ (Ξ£π β (1...(ββπ₯))(1 / (ββπ)) β (2 Β· (ββπ₯)))) |
divsqrsum2.1 | β’ (π β πΉ βπ πΏ) |
Ref | Expression |
---|---|
divsqrtsumo1 | β’ (π β (π¦ β β+ β¦ (((πΉβπ¦) β πΏ) Β· (ββπ¦))) β π(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12985 | . . 3 β’ β+ β β | |
2 | 1 | a1i 11 | . 2 β’ (π β β+ β β) |
3 | divsqrtsum.2 | . . . . . . 7 β’ πΉ = (π₯ β β+ β¦ (Ξ£π β (1...(ββπ₯))(1 / (ββπ)) β (2 Β· (ββπ₯)))) | |
4 | 3 | divsqrsumf 26721 | . . . . . 6 β’ πΉ:β+βΆβ |
5 | 4 | ffvelcdmi 7084 | . . . . 5 β’ (π¦ β β+ β (πΉβπ¦) β β) |
6 | rpsup 13835 | . . . . . . 7 β’ sup(β+, β*, < ) = +β | |
7 | 6 | a1i 11 | . . . . . 6 β’ (π β sup(β+, β*, < ) = +β) |
8 | 4 | a1i 11 | . . . . . . . 8 β’ (π β πΉ:β+βΆβ) |
9 | 8 | feqmptd 6959 | . . . . . . 7 β’ (π β πΉ = (π¦ β β+ β¦ (πΉβπ¦))) |
10 | divsqrsum2.1 | . . . . . . 7 β’ (π β πΉ βπ πΏ) | |
11 | 9, 10 | eqbrtrrd 5171 | . . . . . 6 β’ (π β (π¦ β β+ β¦ (πΉβπ¦)) βπ πΏ) |
12 | 5 | adantl 480 | . . . . . 6 β’ ((π β§ π¦ β β+) β (πΉβπ¦) β β) |
13 | 7, 11, 12 | rlimrecl 15528 | . . . . 5 β’ (π β πΏ β β) |
14 | resubcl 11528 | . . . . 5 β’ (((πΉβπ¦) β β β§ πΏ β β) β ((πΉβπ¦) β πΏ) β β) | |
15 | 5, 13, 14 | syl2anr 595 | . . . 4 β’ ((π β§ π¦ β β+) β ((πΉβπ¦) β πΏ) β β) |
16 | 15 | recnd 11246 | . . 3 β’ ((π β§ π¦ β β+) β ((πΉβπ¦) β πΏ) β β) |
17 | rpsqrtcl 15215 | . . . . 5 β’ (π¦ β β+ β (ββπ¦) β β+) | |
18 | 17 | adantl 480 | . . . 4 β’ ((π β§ π¦ β β+) β (ββπ¦) β β+) |
19 | 18 | rpcnd 13022 | . . 3 β’ ((π β§ π¦ β β+) β (ββπ¦) β β) |
20 | 16, 19 | mulcld 11238 | . 2 β’ ((π β§ π¦ β β+) β (((πΉβπ¦) β πΏ) Β· (ββπ¦)) β β) |
21 | 1red 11219 | . 2 β’ (π β 1 β β) | |
22 | 16, 19 | absmuld 15405 | . . . . 5 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (absβ(ββπ¦)))) |
23 | 18 | rprege0d 13027 | . . . . . . 7 β’ ((π β§ π¦ β β+) β ((ββπ¦) β β β§ 0 β€ (ββπ¦))) |
24 | absid 15247 | . . . . . . 7 β’ (((ββπ¦) β β β§ 0 β€ (ββπ¦)) β (absβ(ββπ¦)) = (ββπ¦)) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ ((π β§ π¦ β β+) β (absβ(ββπ¦)) = (ββπ¦)) |
26 | 25 | oveq2d 7427 | . . . . 5 β’ ((π β§ π¦ β β+) β ((absβ((πΉβπ¦) β πΏ)) Β· (absβ(ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦))) |
27 | 22, 26 | eqtrd 2770 | . . . 4 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦))) |
28 | 3, 10 | divsqrtsum2 26723 | . . . . 5 β’ ((π β§ π¦ β β+) β (absβ((πΉβπ¦) β πΏ)) β€ (1 / (ββπ¦))) |
29 | 16 | abscld 15387 | . . . . . 6 β’ ((π β§ π¦ β β+) β (absβ((πΉβπ¦) β πΏ)) β β) |
30 | 1red 11219 | . . . . . 6 β’ ((π β§ π¦ β β+) β 1 β β) | |
31 | 29, 30, 18 | lemuldivd 13069 | . . . . 5 β’ ((π β§ π¦ β β+) β (((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦)) β€ 1 β (absβ((πΉβπ¦) β πΏ)) β€ (1 / (ββπ¦)))) |
32 | 28, 31 | mpbird 256 | . . . 4 β’ ((π β§ π¦ β β+) β ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦)) β€ 1) |
33 | 27, 32 | eqbrtrd 5169 | . . 3 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) β€ 1) |
34 | 33 | adantrr 713 | . 2 β’ ((π β§ (π¦ β β+ β§ 1 β€ π¦)) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) β€ 1) |
35 | 2, 20, 21, 21, 34 | elo1d 15484 | 1 β’ (π β (π¦ β β+ β¦ (((πΉβπ¦) β πΏ) Β· (ββπ¦))) β π(1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wss 3947 class class class wbr 5147 β¦ cmpt 5230 βΆwf 6538 βcfv 6542 (class class class)co 7411 supcsup 9437 βcr 11111 0cc0 11112 1c1 11113 Β· cmul 11117 +βcpnf 11249 β*cxr 11251 < clt 11252 β€ cle 11253 β cmin 11448 / cdiv 11875 2c2 12271 β+crp 12978 ...cfz 13488 βcfl 13759 βcsqrt 15184 abscabs 15185 βπ crli 15433 π(1)co1 15434 Ξ£csu 15636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ioc 13333 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-o1 15438 df-lo1 15439 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-cmp 23111 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25615 df-dv 25616 df-log 26301 df-cxp 26302 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |