Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divsqrtsumo1 | Structured version Visualization version GIF version |
Description: The sum Ξ£π β€ π₯(1 / βπ) has the asymptotic expansion 2βπ₯ + πΏ + π(1 / βπ₯), for some πΏ. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
divsqrtsum.2 | β’ πΉ = (π₯ β β+ β¦ (Ξ£π β (1...(ββπ₯))(1 / (ββπ)) β (2 Β· (ββπ₯)))) |
divsqrsum2.1 | β’ (π β πΉ βπ πΏ) |
Ref | Expression |
---|---|
divsqrtsumo1 | β’ (π β (π¦ β β+ β¦ (((πΉβπ¦) β πΏ) Β· (ββπ¦))) β π(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12779 | . . 3 β’ β+ β β | |
2 | 1 | a1i 11 | . 2 β’ (π β β+ β β) |
3 | divsqrtsum.2 | . . . . . . 7 β’ πΉ = (π₯ β β+ β¦ (Ξ£π β (1...(ββπ₯))(1 / (ββπ)) β (2 Β· (ββπ₯)))) | |
4 | 3 | divsqrsumf 26171 | . . . . . 6 β’ πΉ:β+βΆβ |
5 | 4 | ffvelcdmi 6988 | . . . . 5 β’ (π¦ β β+ β (πΉβπ¦) β β) |
6 | rpsup 13628 | . . . . . . 7 β’ sup(β+, β*, < ) = +β | |
7 | 6 | a1i 11 | . . . . . 6 β’ (π β sup(β+, β*, < ) = +β) |
8 | 4 | a1i 11 | . . . . . . . 8 β’ (π β πΉ:β+βΆβ) |
9 | 8 | feqmptd 6865 | . . . . . . 7 β’ (π β πΉ = (π¦ β β+ β¦ (πΉβπ¦))) |
10 | divsqrsum2.1 | . . . . . . 7 β’ (π β πΉ βπ πΏ) | |
11 | 9, 10 | eqbrtrrd 5105 | . . . . . 6 β’ (π β (π¦ β β+ β¦ (πΉβπ¦)) βπ πΏ) |
12 | 5 | adantl 483 | . . . . . 6 β’ ((π β§ π¦ β β+) β (πΉβπ¦) β β) |
13 | 7, 11, 12 | rlimrecl 15330 | . . . . 5 β’ (π β πΏ β β) |
14 | resubcl 11327 | . . . . 5 β’ (((πΉβπ¦) β β β§ πΏ β β) β ((πΉβπ¦) β πΏ) β β) | |
15 | 5, 13, 14 | syl2anr 598 | . . . 4 β’ ((π β§ π¦ β β+) β ((πΉβπ¦) β πΏ) β β) |
16 | 15 | recnd 11045 | . . 3 β’ ((π β§ π¦ β β+) β ((πΉβπ¦) β πΏ) β β) |
17 | rpsqrtcl 15017 | . . . . 5 β’ (π¦ β β+ β (ββπ¦) β β+) | |
18 | 17 | adantl 483 | . . . 4 β’ ((π β§ π¦ β β+) β (ββπ¦) β β+) |
19 | 18 | rpcnd 12816 | . . 3 β’ ((π β§ π¦ β β+) β (ββπ¦) β β) |
20 | 16, 19 | mulcld 11037 | . 2 β’ ((π β§ π¦ β β+) β (((πΉβπ¦) β πΏ) Β· (ββπ¦)) β β) |
21 | 1red 11018 | . 2 β’ (π β 1 β β) | |
22 | 16, 19 | absmuld 15207 | . . . . 5 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (absβ(ββπ¦)))) |
23 | 18 | rprege0d 12821 | . . . . . . 7 β’ ((π β§ π¦ β β+) β ((ββπ¦) β β β§ 0 β€ (ββπ¦))) |
24 | absid 15049 | . . . . . . 7 β’ (((ββπ¦) β β β§ 0 β€ (ββπ¦)) β (absβ(ββπ¦)) = (ββπ¦)) | |
25 | 23, 24 | syl 17 | . . . . . 6 β’ ((π β§ π¦ β β+) β (absβ(ββπ¦)) = (ββπ¦)) |
26 | 25 | oveq2d 7319 | . . . . 5 β’ ((π β§ π¦ β β+) β ((absβ((πΉβπ¦) β πΏ)) Β· (absβ(ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦))) |
27 | 22, 26 | eqtrd 2776 | . . . 4 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) = ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦))) |
28 | 3, 10 | divsqrtsum2 26173 | . . . . 5 β’ ((π β§ π¦ β β+) β (absβ((πΉβπ¦) β πΏ)) β€ (1 / (ββπ¦))) |
29 | 16 | abscld 15189 | . . . . . 6 β’ ((π β§ π¦ β β+) β (absβ((πΉβπ¦) β πΏ)) β β) |
30 | 1red 11018 | . . . . . 6 β’ ((π β§ π¦ β β+) β 1 β β) | |
31 | 29, 30, 18 | lemuldivd 12863 | . . . . 5 β’ ((π β§ π¦ β β+) β (((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦)) β€ 1 β (absβ((πΉβπ¦) β πΏ)) β€ (1 / (ββπ¦)))) |
32 | 28, 31 | mpbird 258 | . . . 4 β’ ((π β§ π¦ β β+) β ((absβ((πΉβπ¦) β πΏ)) Β· (ββπ¦)) β€ 1) |
33 | 27, 32 | eqbrtrd 5103 | . . 3 β’ ((π β§ π¦ β β+) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) β€ 1) |
34 | 33 | adantrr 715 | . 2 β’ ((π β§ (π¦ β β+ β§ 1 β€ π¦)) β (absβ(((πΉβπ¦) β πΏ) Β· (ββπ¦))) β€ 1) |
35 | 2, 20, 21, 21, 34 | elo1d 15286 | 1 β’ (π β (π¦ β β+ β¦ (((πΉβπ¦) β πΏ) Β· (ββπ¦))) β π(1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1539 β wcel 2104 β wss 3892 class class class wbr 5081 β¦ cmpt 5164 βΆwf 6450 βcfv 6454 (class class class)co 7303 supcsup 9239 βcr 10912 0cc0 10913 1c1 10914 Β· cmul 10918 +βcpnf 11048 β*cxr 11050 < clt 11051 β€ cle 11052 β cmin 11247 / cdiv 11674 2c2 12070 β+crp 12772 ...cfz 13281 βcfl 13552 βcsqrt 14985 abscabs 14986 βπ crli 15235 π(1)co1 15236 Ξ£csu 15438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-inf2 9439 ax-cnex 10969 ax-resscn 10970 ax-1cn 10971 ax-icn 10972 ax-addcl 10973 ax-addrcl 10974 ax-mulcl 10975 ax-mulrcl 10976 ax-mulcom 10977 ax-addass 10978 ax-mulass 10979 ax-distr 10980 ax-i2m1 10981 ax-1ne0 10982 ax-1rid 10983 ax-rnegex 10984 ax-rrecex 10985 ax-cnre 10986 ax-pre-lttri 10987 ax-pre-lttrn 10988 ax-pre-ltadd 10989 ax-pre-mulgt0 10990 ax-pre-sup 10991 ax-addf 10992 ax-mulf 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-se 5552 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-isom 6463 df-riota 7260 df-ov 7306 df-oprab 7307 df-mpo 7308 df-of 7561 df-om 7741 df-1st 7859 df-2nd 7860 df-supp 8005 df-frecs 8124 df-wrecs 8155 df-recs 8229 df-rdg 8268 df-1o 8324 df-2o 8325 df-er 8525 df-map 8644 df-pm 8645 df-ixp 8713 df-en 8761 df-dom 8762 df-sdom 8763 df-fin 8764 df-fsupp 9169 df-fi 9210 df-sup 9241 df-inf 9242 df-oi 9309 df-card 9737 df-pnf 11053 df-mnf 11054 df-xr 11055 df-ltxr 11056 df-le 11057 df-sub 11249 df-neg 11250 df-div 11675 df-nn 12016 df-2 12078 df-3 12079 df-4 12080 df-5 12081 df-6 12082 df-7 12083 df-8 12084 df-9 12085 df-n0 12276 df-z 12362 df-dec 12480 df-uz 12625 df-q 12731 df-rp 12773 df-xneg 12890 df-xadd 12891 df-xmul 12892 df-ioo 13125 df-ioc 13126 df-ico 13127 df-icc 13128 df-fz 13282 df-fzo 13425 df-fl 13554 df-mod 13632 df-seq 13764 df-exp 13825 df-fac 14030 df-bc 14059 df-hash 14087 df-shft 14819 df-cj 14851 df-re 14852 df-im 14853 df-sqrt 14987 df-abs 14988 df-limsup 15221 df-clim 15238 df-rlim 15239 df-o1 15240 df-lo1 15241 df-sum 15439 df-ef 15818 df-sin 15820 df-cos 15821 df-pi 15823 df-struct 16889 df-sets 16906 df-slot 16924 df-ndx 16936 df-base 16954 df-ress 16983 df-plusg 17016 df-mulr 17017 df-starv 17018 df-sca 17019 df-vsca 17020 df-ip 17021 df-tset 17022 df-ple 17023 df-ds 17025 df-unif 17026 df-hom 17027 df-cco 17028 df-rest 17174 df-topn 17175 df-0g 17193 df-gsum 17194 df-topgen 17195 df-pt 17196 df-prds 17199 df-xrs 17254 df-qtop 17259 df-imas 17260 df-xps 17262 df-mre 17336 df-mrc 17337 df-acs 17339 df-mgm 18367 df-sgrp 18416 df-mnd 18427 df-submnd 18472 df-mulg 18742 df-cntz 18964 df-cmn 19429 df-psmet 20630 df-xmet 20631 df-met 20632 df-bl 20633 df-mopn 20634 df-fbas 20635 df-fg 20636 df-cnfld 20639 df-top 22084 df-topon 22101 df-topsp 22123 df-bases 22137 df-cld 22211 df-ntr 22212 df-cls 22213 df-nei 22290 df-lp 22328 df-perf 22329 df-cn 22419 df-cnp 22420 df-haus 22507 df-cmp 22579 df-tx 22754 df-hmeo 22947 df-fil 23038 df-fm 23130 df-flim 23131 df-flf 23132 df-xms 23514 df-ms 23515 df-tms 23516 df-cncf 24082 df-limc 25071 df-dv 25072 df-log 25753 df-cxp 25754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |