MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumo1 Structured version   Visualization version   GIF version

Theorem divsqrtsumo1 25122
Description: The sum Σ𝑛𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
divsqrsum2.1 (𝜑𝐹𝑟 𝐿)
Assertion
Ref Expression
divsqrtsumo1 (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐿   𝑦,𝑛,𝜑   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumo1
StepHypRef Expression
1 rpssre 12118 . . 3 + ⊆ ℝ
21a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
3 divsqrtsum.2 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
43divsqrsumf 25119 . . . . . 6 𝐹:ℝ+⟶ℝ
54ffvelrni 6606 . . . . 5 (𝑦 ∈ ℝ+ → (𝐹𝑦) ∈ ℝ)
6 rpsup 12959 . . . . . . 7 sup(ℝ+, ℝ*, < ) = +∞
76a1i 11 . . . . . 6 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
84a1i 11 . . . . . . . 8 (𝜑𝐹:ℝ+⟶ℝ)
98feqmptd 6495 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℝ+ ↦ (𝐹𝑦)))
10 divsqrsum2.1 . . . . . . 7 (𝜑𝐹𝑟 𝐿)
119, 10eqbrtrrd 4896 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ+ ↦ (𝐹𝑦)) ⇝𝑟 𝐿)
125adantl 475 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐹𝑦) ∈ ℝ)
137, 11, 12rlimrecl 14687 . . . . 5 (𝜑𝐿 ∈ ℝ)
14 resubcl 10665 . . . . 5 (((𝐹𝑦) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝑦) − 𝐿) ∈ ℝ)
155, 13, 14syl2anr 592 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ((𝐹𝑦) − 𝐿) ∈ ℝ)
1615recnd 10384 . . 3 ((𝜑𝑦 ∈ ℝ+) → ((𝐹𝑦) − 𝐿) ∈ ℂ)
17 rpsqrtcl 14381 . . . . 5 (𝑦 ∈ ℝ+ → (√‘𝑦) ∈ ℝ+)
1817adantl 475 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℝ+)
1918rpcnd 12157 . . 3 ((𝜑𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℂ)
2016, 19mulcld 10376 . 2 ((𝜑𝑦 ∈ ℝ+) → (((𝐹𝑦) − 𝐿) · (√‘𝑦)) ∈ ℂ)
21 1red 10356 . 2 (𝜑 → 1 ∈ ℝ)
2216, 19absmuld 14569 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (abs‘(√‘𝑦))))
2318rprege0d 12162 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)))
24 absid 14412 . . . . . . 7 (((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)) → (abs‘(√‘𝑦)) = (√‘𝑦))
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (abs‘(√‘𝑦)) = (√‘𝑦))
2625oveq2d 6920 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑦) − 𝐿)) · (abs‘(√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)))
2722, 26eqtrd 2860 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)))
283, 10divsqrtsum2 25121 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (abs‘((𝐹𝑦) − 𝐿)) ≤ (1 / (√‘𝑦)))
2916abscld 14551 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (abs‘((𝐹𝑦) − 𝐿)) ∈ ℝ)
30 1red 10356 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ)
3129, 30, 18lemuldivd 12204 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1 ↔ (abs‘((𝐹𝑦) − 𝐿)) ≤ (1 / (√‘𝑦))))
3228, 31mpbird 249 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1)
3327, 32eqbrtrd 4894 . . 3 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) ≤ 1)
3433adantrr 710 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦)) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) ≤ 1)
352, 20, 21, 21, 34elo1d 14643 1 (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wss 3797   class class class wbr 4872  cmpt 4951  wf 6118  cfv 6122  (class class class)co 6904  supcsup 8614  cr 10250  0cc0 10251  1c1 10252   · cmul 10256  +∞cpnf 10387  *cxr 10389   < clt 10390  cle 10391  cmin 10584   / cdiv 11008  2c2 11405  +crp 12111  ...cfz 12618  cfl 12885  csqrt 14349  abscabs 14350  𝑟 crli 14592  𝑂(1)co1 14593  Σcsu 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329  ax-addf 10330  ax-mulf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-iin 4742  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-supp 7559  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-er 8008  df-map 8123  df-pm 8124  df-ixp 8175  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-fsupp 8544  df-fi 8585  df-sup 8616  df-inf 8617  df-oi 8683  df-card 9077  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-q 12071  df-rp 12112  df-xneg 12231  df-xadd 12232  df-xmul 12233  df-ioo 12466  df-ioc 12467  df-ico 12468  df-icc 12469  df-fz 12619  df-fzo 12760  df-fl 12887  df-mod 12963  df-seq 13095  df-exp 13154  df-fac 13353  df-bc 13382  df-hash 13410  df-shft 14183  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-limsup 14578  df-clim 14595  df-rlim 14596  df-o1 14597  df-lo1 14598  df-sum 14793  df-ef 15169  df-sin 15171  df-cos 15172  df-pi 15174  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-starv 16319  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-unif 16327  df-hom 16328  df-cco 16329  df-rest 16435  df-topn 16436  df-0g 16454  df-gsum 16455  df-topgen 16456  df-pt 16457  df-prds 16460  df-xrs 16514  df-qtop 16519  df-imas 16520  df-xps 16522  df-mre 16598  df-mrc 16599  df-acs 16601  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-submnd 17688  df-mulg 17894  df-cntz 18099  df-cmn 18547  df-psmet 20097  df-xmet 20098  df-met 20099  df-bl 20100  df-mopn 20101  df-fbas 20102  df-fg 20103  df-cnfld 20106  df-top 21068  df-topon 21085  df-topsp 21107  df-bases 21120  df-cld 21193  df-ntr 21194  df-cls 21195  df-nei 21272  df-lp 21310  df-perf 21311  df-cn 21401  df-cnp 21402  df-haus 21489  df-cmp 21560  df-tx 21735  df-hmeo 21928  df-fil 22019  df-fm 22111  df-flim 22112  df-flf 22113  df-xms 22494  df-ms 22495  df-tms 22496  df-cncf 23050  df-limc 24028  df-dv 24029  df-log 24701  df-cxp 24702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator