Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divsqrtsumo1 | Structured version Visualization version GIF version |
Description: The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
divsqrtsum.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) |
divsqrsum2.1 | ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
Ref | Expression |
---|---|
divsqrtsumo1 | ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12747 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
3 | divsqrtsum.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) | |
4 | 3 | divsqrsumf 26140 | . . . . . 6 ⊢ 𝐹:ℝ+⟶ℝ |
5 | 4 | ffvelrni 6952 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (𝐹‘𝑦) ∈ ℝ) |
6 | rpsup 13596 | . . . . . . 7 ⊢ sup(ℝ+, ℝ*, < ) = +∞ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → sup(ℝ+, ℝ*, < ) = +∞) |
8 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℝ+⟶ℝ) |
9 | 8 | feqmptd 6829 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦))) |
10 | divsqrsum2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) | |
11 | 9, 10 | eqbrtrrd 5097 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦)) ⇝𝑟 𝐿) |
12 | 5 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑦) ∈ ℝ) |
13 | 7, 11, 12 | rlimrecl 15299 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
14 | resubcl 11295 | . . . . 5 ⊢ (((𝐹‘𝑦) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) | |
15 | 5, 13, 14 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) |
16 | 15 | recnd 11013 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℂ) |
17 | rpsqrtcl 14986 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (√‘𝑦) ∈ ℝ+) | |
18 | 17 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℝ+) |
19 | 18 | rpcnd 12784 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℂ) |
20 | 16, 19 | mulcld 11005 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((𝐹‘𝑦) − 𝐿) · (√‘𝑦)) ∈ ℂ) |
21 | 1red 10986 | . 2 ⊢ (𝜑 → 1 ∈ ℝ) | |
22 | 16, 19 | absmuld 15176 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦)))) |
23 | 18 | rprege0d 12789 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦))) |
24 | absid 15018 | . . . . . . 7 ⊢ (((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)) → (abs‘(√‘𝑦)) = (√‘𝑦)) | |
25 | 23, 24 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(√‘𝑦)) = (√‘𝑦)) |
26 | 25 | oveq2d 7283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
27 | 22, 26 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
28 | 3, 10 | divsqrtsum2 26142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦))) |
29 | 16 | abscld 15158 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ∈ ℝ) |
30 | 1red 10986 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ) | |
31 | 29, 30, 18 | lemuldivd 12831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1 ↔ (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦)))) |
32 | 28, 31 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1) |
33 | 27, 32 | eqbrtrd 5095 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
34 | 33 | adantrr 714 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦)) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
35 | 2, 20, 21, 21, 34 | elo1d 15255 | 1 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3886 class class class wbr 5073 ↦ cmpt 5156 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 supcsup 9186 ℝcr 10880 0cc0 10881 1c1 10882 · cmul 10886 +∞cpnf 11016 ℝ*cxr 11018 < clt 11019 ≤ cle 11020 − cmin 11215 / cdiv 11642 2c2 12038 ℝ+crp 12740 ...cfz 13249 ⌊cfl 13520 √csqrt 14954 abscabs 14955 ⇝𝑟 crli 15204 𝑂(1)co1 15205 Σcsu 15407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-fi 9157 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-q 12699 df-rp 12741 df-xneg 12858 df-xadd 12859 df-xmul 12860 df-ioo 13093 df-ioc 13094 df-ico 13095 df-icc 13096 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-exp 13793 df-fac 13998 df-bc 14027 df-hash 14055 df-shft 14788 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-limsup 15190 df-clim 15207 df-rlim 15208 df-o1 15209 df-lo1 15210 df-sum 15408 df-ef 15787 df-sin 15789 df-cos 15790 df-pi 15792 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-rest 17143 df-topn 17144 df-0g 17162 df-gsum 17163 df-topgen 17164 df-pt 17165 df-prds 17168 df-xrs 17223 df-qtop 17228 df-imas 17229 df-xps 17231 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-submnd 18441 df-mulg 18711 df-cntz 18933 df-cmn 19398 df-psmet 20599 df-xmet 20600 df-met 20601 df-bl 20602 df-mopn 20603 df-fbas 20604 df-fg 20605 df-cnfld 20608 df-top 22053 df-topon 22070 df-topsp 22092 df-bases 22106 df-cld 22180 df-ntr 22181 df-cls 22182 df-nei 22259 df-lp 22297 df-perf 22298 df-cn 22388 df-cnp 22389 df-haus 22476 df-cmp 22548 df-tx 22723 df-hmeo 22916 df-fil 23007 df-fm 23099 df-flim 23100 df-flf 23101 df-xms 23483 df-ms 23484 df-tms 23485 df-cncf 24051 df-limc 25040 df-dv 25041 df-log 25722 df-cxp 25723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |