![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsqrtsumo1 | Structured version Visualization version GIF version |
Description: The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
divsqrtsum.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) |
divsqrsum2.1 | ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
Ref | Expression |
---|---|
divsqrtsumo1 | ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 13040 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
3 | divsqrtsum.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) | |
4 | 3 | divsqrsumf 27039 | . . . . . 6 ⊢ 𝐹:ℝ+⟶ℝ |
5 | 4 | ffvelcdmi 7103 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (𝐹‘𝑦) ∈ ℝ) |
6 | rpsup 13903 | . . . . . . 7 ⊢ sup(ℝ+, ℝ*, < ) = +∞ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → sup(ℝ+, ℝ*, < ) = +∞) |
8 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℝ+⟶ℝ) |
9 | 8 | feqmptd 6977 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦))) |
10 | divsqrsum2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) | |
11 | 9, 10 | eqbrtrrd 5172 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦)) ⇝𝑟 𝐿) |
12 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑦) ∈ ℝ) |
13 | 7, 11, 12 | rlimrecl 15613 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
14 | resubcl 11571 | . . . . 5 ⊢ (((𝐹‘𝑦) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) | |
15 | 5, 13, 14 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) |
16 | 15 | recnd 11287 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℂ) |
17 | rpsqrtcl 15300 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (√‘𝑦) ∈ ℝ+) | |
18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℝ+) |
19 | 18 | rpcnd 13077 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℂ) |
20 | 16, 19 | mulcld 11279 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((𝐹‘𝑦) − 𝐿) · (√‘𝑦)) ∈ ℂ) |
21 | 1red 11260 | . 2 ⊢ (𝜑 → 1 ∈ ℝ) | |
22 | 16, 19 | absmuld 15490 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦)))) |
23 | 18 | rprege0d 13082 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦))) |
24 | absid 15332 | . . . . . . 7 ⊢ (((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)) → (abs‘(√‘𝑦)) = (√‘𝑦)) | |
25 | 23, 24 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(√‘𝑦)) = (√‘𝑦)) |
26 | 25 | oveq2d 7447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
27 | 22, 26 | eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
28 | 3, 10 | divsqrtsum2 27041 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦))) |
29 | 16 | abscld 15472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ∈ ℝ) |
30 | 1red 11260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ) | |
31 | 29, 30, 18 | lemuldivd 13124 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1 ↔ (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦)))) |
32 | 28, 31 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1) |
33 | 27, 32 | eqbrtrd 5170 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
34 | 33 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦)) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
35 | 2, 20, 21, 21, 34 | elo1d 15569 | 1 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 − cmin 11490 / cdiv 11918 2c2 12319 ℝ+crp 13032 ...cfz 13544 ⌊cfl 13827 √csqrt 15269 abscabs 15270 ⇝𝑟 crli 15518 𝑂(1)co1 15519 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-o1 15523 df-lo1 15524 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-cxp 26614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |