MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumo1 Structured version   Visualization version   GIF version

Theorem divsqrtsumo1 27042
Description: The sum Σ𝑛𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
divsqrsum2.1 (𝜑𝐹𝑟 𝐿)
Assertion
Ref Expression
divsqrtsumo1 (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑦,𝐿   𝑦,𝑛,𝜑   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumo1
StepHypRef Expression
1 rpssre 13040 . . 3 + ⊆ ℝ
21a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
3 divsqrtsum.2 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
43divsqrsumf 27039 . . . . . 6 𝐹:ℝ+⟶ℝ
54ffvelcdmi 7103 . . . . 5 (𝑦 ∈ ℝ+ → (𝐹𝑦) ∈ ℝ)
6 rpsup 13903 . . . . . . 7 sup(ℝ+, ℝ*, < ) = +∞
76a1i 11 . . . . . 6 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
84a1i 11 . . . . . . . 8 (𝜑𝐹:ℝ+⟶ℝ)
98feqmptd 6977 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℝ+ ↦ (𝐹𝑦)))
10 divsqrsum2.1 . . . . . . 7 (𝜑𝐹𝑟 𝐿)
119, 10eqbrtrrd 5172 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ+ ↦ (𝐹𝑦)) ⇝𝑟 𝐿)
125adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐹𝑦) ∈ ℝ)
137, 11, 12rlimrecl 15613 . . . . 5 (𝜑𝐿 ∈ ℝ)
14 resubcl 11571 . . . . 5 (((𝐹𝑦) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝑦) − 𝐿) ∈ ℝ)
155, 13, 14syl2anr 597 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ((𝐹𝑦) − 𝐿) ∈ ℝ)
1615recnd 11287 . . 3 ((𝜑𝑦 ∈ ℝ+) → ((𝐹𝑦) − 𝐿) ∈ ℂ)
17 rpsqrtcl 15300 . . . . 5 (𝑦 ∈ ℝ+ → (√‘𝑦) ∈ ℝ+)
1817adantl 481 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℝ+)
1918rpcnd 13077 . . 3 ((𝜑𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℂ)
2016, 19mulcld 11279 . 2 ((𝜑𝑦 ∈ ℝ+) → (((𝐹𝑦) − 𝐿) · (√‘𝑦)) ∈ ℂ)
21 1red 11260 . 2 (𝜑 → 1 ∈ ℝ)
2216, 19absmuld 15490 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (abs‘(√‘𝑦))))
2318rprege0d 13082 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)))
24 absid 15332 . . . . . . 7 (((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)) → (abs‘(√‘𝑦)) = (√‘𝑦))
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (abs‘(√‘𝑦)) = (√‘𝑦))
2625oveq2d 7447 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑦) − 𝐿)) · (abs‘(√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)))
2722, 26eqtrd 2775 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)))
283, 10divsqrtsum2 27041 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (abs‘((𝐹𝑦) − 𝐿)) ≤ (1 / (√‘𝑦)))
2916abscld 15472 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (abs‘((𝐹𝑦) − 𝐿)) ∈ ℝ)
30 1red 11260 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ)
3129, 30, 18lemuldivd 13124 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1 ↔ (abs‘((𝐹𝑦) − 𝐿)) ≤ (1 / (√‘𝑦))))
3228, 31mpbird 257 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1)
3327, 32eqbrtrd 5170 . . 3 ((𝜑𝑦 ∈ ℝ+) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) ≤ 1)
3433adantrr 717 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦)) → (abs‘(((𝐹𝑦) − 𝐿) · (√‘𝑦))) ≤ 1)
352, 20, 21, 21, 34elo1d 15569 1 (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  ...cfz 13544  cfl 13827  csqrt 15269  abscabs 15270  𝑟 crli 15518  𝑂(1)co1 15519  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-o1 15523  df-lo1 15524  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator