| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsqrtsumo1 | Structured version Visualization version GIF version | ||
| Description: The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| divsqrtsum.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) |
| divsqrsum2.1 | ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
| Ref | Expression |
|---|---|
| divsqrtsumo1 | ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 13042 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
| 3 | divsqrtsum.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) | |
| 4 | 3 | divsqrsumf 27024 | . . . . . 6 ⊢ 𝐹:ℝ+⟶ℝ |
| 5 | 4 | ffvelcdmi 7103 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (𝐹‘𝑦) ∈ ℝ) |
| 6 | rpsup 13906 | . . . . . . 7 ⊢ sup(ℝ+, ℝ*, < ) = +∞ | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → sup(ℝ+, ℝ*, < ) = +∞) |
| 8 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℝ+⟶ℝ) |
| 9 | 8 | feqmptd 6977 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦))) |
| 10 | divsqrsum2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) | |
| 11 | 9, 10 | eqbrtrrd 5167 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (𝐹‘𝑦)) ⇝𝑟 𝐿) |
| 12 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑦) ∈ ℝ) |
| 13 | 7, 11, 12 | rlimrecl 15616 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 14 | resubcl 11573 | . . . . 5 ⊢ (((𝐹‘𝑦) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) | |
| 15 | 5, 13, 14 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℝ) |
| 16 | 15 | recnd 11289 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑦) − 𝐿) ∈ ℂ) |
| 17 | rpsqrtcl 15303 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → (√‘𝑦) ∈ ℝ+) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℝ+) |
| 19 | 18 | rpcnd 13079 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (√‘𝑦) ∈ ℂ) |
| 20 | 16, 19 | mulcld 11281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((𝐹‘𝑦) − 𝐿) · (√‘𝑦)) ∈ ℂ) |
| 21 | 1red 11262 | . 2 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 22 | 16, 19 | absmuld 15493 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦)))) |
| 23 | 18 | rprege0d 13084 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦))) |
| 24 | absid 15335 | . . . . . . 7 ⊢ (((√‘𝑦) ∈ ℝ ∧ 0 ≤ (√‘𝑦)) → (abs‘(√‘𝑦)) = (√‘𝑦)) | |
| 25 | 23, 24 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(√‘𝑦)) = (√‘𝑦)) |
| 26 | 25 | oveq2d 7447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (abs‘(√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
| 27 | 22, 26 | eqtrd 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) = ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦))) |
| 28 | 3, 10 | divsqrtsum2 27026 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦))) |
| 29 | 16 | abscld 15475 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘((𝐹‘𝑦) − 𝐿)) ∈ ℝ) |
| 30 | 1red 11262 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ) | |
| 31 | 29, 30, 18 | lemuldivd 13126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1 ↔ (abs‘((𝐹‘𝑦) − 𝐿)) ≤ (1 / (√‘𝑦)))) |
| 32 | 28, 31 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((abs‘((𝐹‘𝑦) − 𝐿)) · (√‘𝑦)) ≤ 1) |
| 33 | 27, 32 | eqbrtrd 5165 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
| 34 | 33 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦)) → (abs‘(((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ≤ 1) |
| 35 | 2, 20, 21, 21, 34 | elo1d 15572 | 1 ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supcsup 9480 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 − cmin 11492 / cdiv 11920 2c2 12321 ℝ+crp 13034 ...cfz 13547 ⌊cfl 13830 √csqrt 15272 abscabs 15273 ⇝𝑟 crli 15521 𝑂(1)co1 15522 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-o1 15526 df-lo1 15527 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 df-log 26598 df-cxp 26599 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |