| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpo1ub | Structured version Visualization version GIF version | ||
| Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.) |
| Ref | Expression |
|---|---|
| chpo1ub | ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12202 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 2 | elicopnf 13348 | . . . . . . . . . . 11 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
| 4 | chtrpcl 27083 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
| 5 | 3, 4 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
| 6 | 5 | rpcnne0d 12946 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
| 7 | 3 | simplbi 497 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
| 8 | 0red 11118 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
| 9 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
| 10 | 2pos 12231 | . . . . . . . . . . . 12 ⊢ 0 < 2 | |
| 11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
| 12 | 3 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
| 13 | 8, 9, 7, 11, 12 | ltletrd 11276 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
| 14 | 7, 13 | elrpd 12934 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
| 15 | 14 | rpcnne0d 12946 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 16 | rpre 12902 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 17 | chpcl 27032 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
| 19 | 18 | recnd 11143 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
| 20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
| 21 | dmdcan 11834 | . . . . . . . 8 ⊢ ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (ψ‘𝑥) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) | |
| 22 | 6, 15, 20, 21 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
| 23 | 22 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
| 24 | 23 | mpteq2dva 5185 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
| 25 | ovexd 7384 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ∈ V) | |
| 26 | ovexd 7384 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V) | |
| 27 | ovexd 7384 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ V) | |
| 28 | eqidd 2730 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
| 29 | eqidd 2730 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) | |
| 30 | 25, 26, 27, 28, 29 | offval2 7633 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))))) |
| 31 | 14 | ssriv 3939 | . . . . . 6 ⊢ (2[,)+∞) ⊆ ℝ+ |
| 32 | resmpt 5988 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) | |
| 33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
| 34 | 24, 30, 33 | 3eqtr4rd 2775 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))))) |
| 35 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
| 36 | chto1ub 27385 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) | |
| 37 | 36 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
| 38 | 35, 37 | o1res2 15470 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
| 39 | chpchtlim 27388 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
| 40 | rlimo1 15524 | . . . . . 6 ⊢ ((𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) | |
| 41 | 39, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1) |
| 42 | o1mul 15522 | . . . . 5 ⊢ (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) | |
| 43 | 38, 41, 42 | sylancl 586 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) |
| 44 | 34, 43 | eqeltrd 2828 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1)) |
| 45 | rerpdivcl 12925 | . . . . . . . 8 ⊢ (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) | |
| 46 | 18, 45 | mpancom 688 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
| 47 | 46 | recnd 11143 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
| 48 | 47 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
| 49 | 48 | fmpttd 7049 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
| 50 | rpssre 12901 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 51 | 50 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
| 52 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
| 53 | 49, 51, 52 | o1resb 15473 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1))) |
| 54 | 44, 53 | mpbird 257 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
| 55 | 54 | mptru 1547 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 · cmul 11014 +∞cpnf 11146 < clt 11149 ≤ cle 11150 / cdiv 11777 2c2 12183 ℝ+crp 12893 [,)cico 13250 ⇝𝑟 crli 15392 𝑂(1)co1 15393 θccht 26999 ψcchp 27001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-o1 15397 df-lo1 15398 df-sum 15594 df-ef 15974 df-e 15975 df-sin 15976 df-cos 15977 df-pi 15979 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-cxp 26464 df-cht 27005 df-vma 27006 df-chp 27007 df-ppi 27008 |
| This theorem is referenced by: chpo1ubb 27390 vmadivsum 27391 selberg2lem 27459 pntrmax 27473 pntrsumo1 27474 pntrlog2bndlem2 27487 |
| Copyright terms: Public domain | W3C validator |