![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpo1ub | Structured version Visualization version GIF version |
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.) |
Ref | Expression |
---|---|
chpo1ub | ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12367 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
2 | elicopnf 13505 | . . . . . . . . . . 11 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
4 | chtrpcl 27236 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
5 | 3, 4 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
6 | 5 | rpcnne0d 13108 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
7 | 3 | simplbi 497 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
8 | 0red 11293 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
9 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
10 | 2pos 12396 | . . . . . . . . . . . 12 ⊢ 0 < 2 | |
11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
12 | 3 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
13 | 8, 9, 7, 11, 12 | ltletrd 11450 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
14 | 7, 13 | elrpd 13096 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
15 | 14 | rpcnne0d 13108 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
16 | rpre 13065 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
17 | chpcl 27185 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
18 | 16, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
19 | 18 | recnd 11318 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
21 | dmdcan 12004 | . . . . . . . 8 ⊢ ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (ψ‘𝑥) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) | |
22 | 6, 15, 20, 21 | syl3anc 1371 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
23 | 22 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
24 | 23 | mpteq2dva 5266 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
25 | ovexd 7483 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ∈ V) | |
26 | ovexd 7483 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V) | |
27 | ovexd 7483 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ V) | |
28 | eqidd 2741 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
29 | eqidd 2741 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) | |
30 | 25, 26, 27, 28, 29 | offval2 7734 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))))) |
31 | 14 | ssriv 4012 | . . . . . 6 ⊢ (2[,)+∞) ⊆ ℝ+ |
32 | resmpt 6066 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) | |
33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
34 | 24, 30, 33 | 3eqtr4rd 2791 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))))) |
35 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
36 | chto1ub 27538 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) | |
37 | 36 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
38 | 35, 37 | o1res2 15609 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
39 | chpchtlim 27541 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
40 | rlimo1 15663 | . . . . . 6 ⊢ ((𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) | |
41 | 39, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1) |
42 | o1mul 15661 | . . . . 5 ⊢ (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) | |
43 | 38, 41, 42 | sylancl 585 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) |
44 | 34, 43 | eqeltrd 2844 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1)) |
45 | rerpdivcl 13087 | . . . . . . . 8 ⊢ (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) | |
46 | 18, 45 | mpancom 687 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
47 | 46 | recnd 11318 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
48 | 47 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
49 | 48 | fmpttd 7149 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
50 | rpssre 13064 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
51 | 50 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
52 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
53 | 49, 51, 52 | o1resb 15612 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1))) |
54 | 44, 53 | mpbird 257 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
55 | 54 | mptru 1544 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 +∞cpnf 11321 < clt 11324 ≤ cle 11325 / cdiv 11947 2c2 12348 ℝ+crp 13057 [,)cico 13409 ⇝𝑟 crli 15531 𝑂(1)co1 15532 θccht 27152 ψcchp 27154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-o1 15536 df-lo1 15537 df-sum 15735 df-ef 16115 df-e 16116 df-sin 16117 df-cos 16118 df-pi 16120 df-dvds 16303 df-gcd 16541 df-prm 16719 df-pc 16884 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-cxp 26617 df-cht 27158 df-vma 27159 df-chp 27160 df-ppi 27161 |
This theorem is referenced by: chpo1ubb 27543 vmadivsum 27544 selberg2lem 27612 pntrmax 27626 pntrsumo1 27627 pntrlog2bndlem2 27640 |
Copyright terms: Public domain | W3C validator |