Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpo1ub | Structured version Visualization version GIF version |
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.) |
Ref | Expression |
---|---|
chpo1ub | ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11977 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
2 | elicopnf 13106 | . . . . . . . . . . 11 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
4 | chtrpcl 26229 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
5 | 3, 4 | sylbi 216 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
6 | 5 | rpcnne0d 12710 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
7 | 3 | simplbi 497 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
8 | 0red 10909 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
9 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
10 | 2pos 12006 | . . . . . . . . . . . 12 ⊢ 0 < 2 | |
11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
12 | 3 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
13 | 8, 9, 7, 11, 12 | ltletrd 11065 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
14 | 7, 13 | elrpd 12698 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
15 | 14 | rpcnne0d 12710 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
16 | rpre 12667 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
17 | chpcl 26178 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
18 | 16, 17 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
19 | 18 | recnd 10934 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
21 | dmdcan 11615 | . . . . . . . 8 ⊢ ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (ψ‘𝑥) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) | |
22 | 6, 15, 20, 21 | syl3anc 1369 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
23 | 22 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))) = ((ψ‘𝑥) / 𝑥)) |
24 | 23 | mpteq2dva 5170 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
25 | ovexd 7290 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ∈ V) | |
26 | ovexd 7290 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V) | |
27 | ovexd 7290 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ V) | |
28 | eqidd 2739 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
29 | eqidd 2739 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) | |
30 | 25, 26, 27, 28, 29 | offval2 7531 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · ((ψ‘𝑥) / (θ‘𝑥))))) |
31 | 14 | ssriv 3921 | . . . . . 6 ⊢ (2[,)+∞) ⊆ ℝ+ |
32 | resmpt 5934 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) | |
33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥))) |
34 | 24, 30, 33 | 3eqtr4rd 2789 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))))) |
35 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
36 | chto1ub 26529 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) | |
37 | 36 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
38 | 35, 37 | o1res2 15200 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
39 | chpchtlim 26532 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
40 | rlimo1 15254 | . . . . . 6 ⊢ ((𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) | |
41 | 39, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1) |
42 | o1mul 15252 | . . . . 5 ⊢ (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) | |
43 | 38, 41, 42 | sylancl 585 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥)))) ∈ 𝑂(1)) |
44 | 34, 43 | eqeltrd 2839 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1)) |
45 | rerpdivcl 12689 | . . . . . . . 8 ⊢ (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) | |
46 | 18, 45 | mpancom 684 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
47 | 46 | recnd 10934 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
48 | 47 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
49 | 48 | fmpttd 6971 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
50 | rpssre 12666 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
51 | 50 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
52 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
53 | 49, 51, 52 | o1resb 15203 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ∈ 𝑂(1))) |
54 | 44, 53 | mpbird 256 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
55 | 54 | mptru 1546 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 +∞cpnf 10937 < clt 10940 ≤ cle 10941 / cdiv 11562 2c2 11958 ℝ+crp 12659 [,)cico 13010 ⇝𝑟 crli 15122 𝑂(1)co1 15123 θccht 26145 ψcchp 26147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-o1 15127 df-lo1 15128 df-sum 15326 df-ef 15705 df-e 15706 df-sin 15707 df-cos 15708 df-pi 15710 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-cht 26151 df-vma 26152 df-chp 26153 df-ppi 26154 |
This theorem is referenced by: chpo1ubb 26534 vmadivsum 26535 selberg2lem 26603 pntrmax 26617 pntrsumo1 26618 pntrlog2bndlem2 26631 |
Copyright terms: Public domain | W3C validator |