![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssmetdval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssims2.1 | β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© |
hhssims2.3 | β’ π· = (IndMetβπ) |
hhssims2.2 | β’ π» β Sβ |
Ref | Expression |
---|---|
hhssmetdval | β’ ((π΄ β π» β§ π΅ β π») β (π΄π·π΅) = (normββ(π΄ ββ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims2.1 | . . . 4 β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© | |
2 | hhssims2.2 | . . . 4 β’ π» β Sβ | |
3 | 1, 2 | hhssnv 31048 | . . 3 β’ π β NrmCVec |
4 | 1, 2 | hhssba 31055 | . . . 4 β’ π» = (BaseSetβπ) |
5 | 1, 2 | hhssvs 31056 | . . . 4 β’ ( ββ βΎ (π» Γ π»)) = ( βπ£ βπ) |
6 | 1 | hhssnm 31043 | . . . 4 β’ (normβ βΎ π») = (normCVβπ) |
7 | hhssims2.3 | . . . 4 β’ π· = (IndMetβπ) | |
8 | 4, 5, 6, 7 | imsdval 30470 | . . 3 β’ ((π β NrmCVec β§ π΄ β π» β§ π΅ β π») β (π΄π·π΅) = ((normβ βΎ π»)β(π΄( ββ βΎ (π» Γ π»))π΅))) |
9 | 3, 8 | mp3an1 1445 | . 2 β’ ((π΄ β π» β§ π΅ β π») β (π΄π·π΅) = ((normβ βΎ π»)β(π΄( ββ βΎ (π» Γ π»))π΅))) |
10 | ovres 7579 | . . 3 β’ ((π΄ β π» β§ π΅ β π») β (π΄( ββ βΎ (π» Γ π»))π΅) = (π΄ ββ π΅)) | |
11 | 10 | fveq2d 6895 | . 2 β’ ((π΄ β π» β§ π΅ β π») β ((normβ βΎ π»)β(π΄( ββ βΎ (π» Γ π»))π΅)) = ((normβ βΎ π»)β(π΄ ββ π΅))) |
12 | shsubcl 31004 | . . . 4 β’ ((π» β Sβ β§ π΄ β π» β§ π΅ β π») β (π΄ ββ π΅) β π») | |
13 | 2, 12 | mp3an1 1445 | . . 3 β’ ((π΄ β π» β§ π΅ β π») β (π΄ ββ π΅) β π») |
14 | fvres 6910 | . . 3 β’ ((π΄ ββ π΅) β π» β ((normβ βΎ π»)β(π΄ ββ π΅)) = (normββ(π΄ ββ π΅))) | |
15 | 13, 14 | syl 17 | . 2 β’ ((π΄ β π» β§ π΅ β π») β ((normβ βΎ π»)β(π΄ ββ π΅)) = (normββ(π΄ ββ π΅))) |
16 | 9, 11, 15 | 3eqtrd 2771 | 1 β’ ((π΄ β π» β§ π΅ β π») β (π΄π·π΅) = (normββ(π΄ ββ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β¨cop 4630 Γ cxp 5670 βΎ cres 5674 βcfv 6542 (class class class)co 7414 βcc 11122 NrmCVeccnv 30368 IndMetcims 30375 +β cva 30704 Β·β csm 30705 normβcno 30707 ββ cmv 30709 Sβ csh 30712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 ax-mulf 11204 ax-hilex 30783 ax-hfvadd 30784 ax-hvcom 30785 ax-hvass 30786 ax-hv0cl 30787 ax-hvaddid 30788 ax-hfvmul 30789 ax-hvmulid 30790 ax-hvmulass 30791 ax-hvdistr1 30792 ax-hvdistr2 30793 ax-hvmul0 30794 ax-hfi 30863 ax-his1 30866 ax-his2 30867 ax-his3 30868 ax-his4 30869 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-icc 13349 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-topgen 17410 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-top 22770 df-topon 22787 df-bases 22823 df-lm 23107 df-haus 23193 df-grpo 30277 df-gid 30278 df-ginv 30279 df-gdiv 30280 df-ablo 30329 df-vc 30343 df-nv 30376 df-va 30379 df-ba 30380 df-sm 30381 df-0v 30382 df-vs 30383 df-nmcv 30384 df-ims 30385 df-ssp 30506 df-hnorm 30752 df-hba 30753 df-hvsub 30755 df-hlim 30756 df-sh 30991 df-ch 31005 df-ch0 31037 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |