![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssmetdval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
hhssims2.2 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
hhssmetdval | ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims2.1 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
2 | hhssims2.2 | . . . 4 ⊢ 𝐻 ∈ Sℋ | |
3 | 1, 2 | hhssnv 28461 | . . 3 ⊢ 𝑊 ∈ NrmCVec |
4 | 1, 2 | hhssba 28468 | . . . 4 ⊢ 𝐻 = (BaseSet‘𝑊) |
5 | 1, 2 | hhssvs 28469 | . . . 4 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) |
6 | 1 | hhssnm 28456 | . . . 4 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
7 | hhssims2.3 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑊) | |
8 | 4, 5, 6, 7 | imsdval 27881 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = ((normℎ ↾ 𝐻)‘(𝐴( −ℎ ↾ (𝐻 × 𝐻))𝐵))) |
9 | 3, 8 | mp3an1 1559 | . 2 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = ((normℎ ↾ 𝐻)‘(𝐴( −ℎ ↾ (𝐻 × 𝐻))𝐵))) |
10 | ovres 6947 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴( −ℎ ↾ (𝐻 × 𝐻))𝐵) = (𝐴 −ℎ 𝐵)) | |
11 | 10 | fveq2d 6336 | . 2 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → ((normℎ ↾ 𝐻)‘(𝐴( −ℎ ↾ (𝐻 × 𝐻))𝐵)) = ((normℎ ↾ 𝐻)‘(𝐴 −ℎ 𝐵))) |
12 | shsubcl 28417 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
13 | 2, 12 | mp3an1 1559 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
14 | fvres 6348 | . . 3 ⊢ ((𝐴 −ℎ 𝐵) ∈ 𝐻 → ((normℎ ↾ 𝐻)‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐴 −ℎ 𝐵))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → ((normℎ ↾ 𝐻)‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐴 −ℎ 𝐵))) |
16 | 9, 11, 15 | 3eqtrd 2809 | 1 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 〈cop 4322 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 NrmCVeccnv 27779 IndMetcims 27786 +ℎ cva 28117 ·ℎ csm 28118 normℎcno 28120 −ℎ cmv 28122 Sℋ csh 28125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvmulass 28204 ax-hvdistr1 28205 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-icc 12387 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-lm 21254 df-haus 21340 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 df-ssp 27917 df-hnorm 28165 df-hba 28166 df-hvsub 28168 df-hlim 28169 df-sh 28404 df-ch 28418 df-ch0 28450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |