| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rphalfcl 12980 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 / cdiv 11835 2c2 12241 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-2 12249 df-rp 12952 |
| This theorem is referenced by: nnesq 14192 rlimuni 15516 climuni 15518 reccn2 15563 iseralt 15651 mertenslem1 15850 mertenslem2 15851 ege2le3 16056 rpcoshcl 16125 sqrt2irrlem 16216 4sqlem7 16915 ssblex 24316 methaus 24408 met2ndci 24410 metustexhalf 24444 cfilucfil 24447 nlmvscnlem2 24573 nlmvscnlem1 24574 nrginvrcnlem 24579 reperflem 24707 icccmplem2 24712 metdcnlem 24725 metnrmlem2 24749 metnrmlem3 24750 ipcnlem2 25144 ipcnlem1 25145 minveclem3 25329 ovollb2lem 25389 ovolunlem2 25399 uniioombl 25490 itg2cnlem2 25663 itg2cn 25664 lhop1lem 25918 lhop1 25919 aaliou2b 26249 ulmcn 26308 pserdvlem1 26337 pserdv 26339 cxpcn3lem 26657 lgamgulmlem3 26941 lgamucov 26948 ftalem2 26984 bposlem7 27201 bposlem9 27203 lgsquadlem2 27292 chebbnd1lem2 27381 pntibndlem3 27503 pntibnd 27504 pntlemr 27513 lt2addrd 32674 tpr2rico 33902 knoppndvlem17 36516 tan2h 37606 mblfinlem4 37654 sstotbnd2 37768 3lexlogpow2ineq2 42047 dstregt0 45280 suplesup 45335 infleinf 45368 lptre2pt 45638 0ellimcdiv 45647 limsupgtlem 45775 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 stoweidlem62 46060 stirlinglem1 46072 |
| Copyright terms: Public domain | W3C validator |