![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rphalfcl 13084 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 / cdiv 11947 2c2 12348 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-rp 13058 |
This theorem is referenced by: nnesq 14276 rlimuni 15596 climuni 15598 reccn2 15643 iseralt 15733 mertenslem1 15932 mertenslem2 15933 ege2le3 16138 rpcoshcl 16205 sqrt2irrlem 16296 4sqlem7 16991 ssblex 24459 methaus 24554 met2ndci 24556 metustexhalf 24590 cfilucfil 24593 nlmvscnlem2 24727 nlmvscnlem1 24728 nrginvrcnlem 24733 reperflem 24859 icccmplem2 24864 metdcnlem 24877 metnrmlem2 24901 metnrmlem3 24902 ipcnlem2 25297 ipcnlem1 25298 minveclem3 25482 ovollb2lem 25542 ovolunlem2 25552 uniioombl 25643 itg2cnlem2 25817 itg2cn 25818 lhop1lem 26072 lhop1 26073 aaliou2b 26401 ulmcn 26460 pserdvlem1 26489 pserdv 26491 cxpcn3lem 26808 lgamgulmlem3 27092 lgamucov 27099 ftalem2 27135 bposlem7 27352 bposlem9 27354 lgsquadlem2 27443 chebbnd1lem2 27532 pntibndlem3 27654 pntibnd 27655 pntlemr 27664 lt2addrd 32758 tpr2rico 33858 knoppndvlem17 36494 tan2h 37572 mblfinlem4 37620 sstotbnd2 37734 3lexlogpow2ineq2 42016 dstregt0 45196 suplesup 45254 infleinf 45287 lptre2pt 45561 0ellimcdiv 45570 limsupgtlem 45698 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 stoweidlem62 45983 stirlinglem1 45995 |
Copyright terms: Public domain | W3C validator |