| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rphalfcl 12956 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 / cdiv 11811 2c2 12217 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-2 12225 df-rp 12928 |
| This theorem is referenced by: nnesq 14168 rlimuni 15492 climuni 15494 reccn2 15539 iseralt 15627 mertenslem1 15826 mertenslem2 15827 ege2le3 16032 rpcoshcl 16101 sqrt2irrlem 16192 4sqlem7 16891 ssblex 24349 methaus 24441 met2ndci 24443 metustexhalf 24477 cfilucfil 24480 nlmvscnlem2 24606 nlmvscnlem1 24607 nrginvrcnlem 24612 reperflem 24740 icccmplem2 24745 metdcnlem 24758 metnrmlem2 24782 metnrmlem3 24783 ipcnlem2 25177 ipcnlem1 25178 minveclem3 25362 ovollb2lem 25422 ovolunlem2 25432 uniioombl 25523 itg2cnlem2 25696 itg2cn 25697 lhop1lem 25951 lhop1 25952 aaliou2b 26282 ulmcn 26341 pserdvlem1 26370 pserdv 26372 cxpcn3lem 26690 lgamgulmlem3 26974 lgamucov 26981 ftalem2 27017 bposlem7 27234 bposlem9 27236 lgsquadlem2 27325 chebbnd1lem2 27414 pntibndlem3 27536 pntibnd 27537 pntlemr 27546 lt2addrd 32724 tpr2rico 33895 knoppndvlem17 36509 tan2h 37599 mblfinlem4 37647 sstotbnd2 37761 3lexlogpow2ineq2 42040 dstregt0 45273 suplesup 45328 infleinf 45361 lptre2pt 45631 0ellimcdiv 45640 limsupgtlem 45768 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 stoweidlem62 46053 stirlinglem1 46065 |
| Copyright terms: Public domain | W3C validator |