| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rphalfcl 13041 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7410 / cdiv 11899 2c2 12300 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-2 12308 df-rp 13014 |
| This theorem is referenced by: nnesq 14250 rlimuni 15571 climuni 15573 reccn2 15618 iseralt 15706 mertenslem1 15905 mertenslem2 15906 ege2le3 16111 rpcoshcl 16180 sqrt2irrlem 16271 4sqlem7 16969 ssblex 24372 methaus 24464 met2ndci 24466 metustexhalf 24500 cfilucfil 24503 nlmvscnlem2 24629 nlmvscnlem1 24630 nrginvrcnlem 24635 reperflem 24763 icccmplem2 24768 metdcnlem 24781 metnrmlem2 24805 metnrmlem3 24806 ipcnlem2 25201 ipcnlem1 25202 minveclem3 25386 ovollb2lem 25446 ovolunlem2 25456 uniioombl 25547 itg2cnlem2 25720 itg2cn 25721 lhop1lem 25975 lhop1 25976 aaliou2b 26306 ulmcn 26365 pserdvlem1 26394 pserdv 26396 cxpcn3lem 26714 lgamgulmlem3 26998 lgamucov 27005 ftalem2 27041 bposlem7 27258 bposlem9 27260 lgsquadlem2 27349 chebbnd1lem2 27438 pntibndlem3 27560 pntibnd 27561 pntlemr 27570 lt2addrd 32733 tpr2rico 33948 knoppndvlem17 36551 tan2h 37641 mblfinlem4 37689 sstotbnd2 37803 3lexlogpow2ineq2 42077 dstregt0 45277 suplesup 45333 infleinf 45366 lptre2pt 45636 0ellimcdiv 45645 limsupgtlem 45773 ioodvbdlimc1lem2 45928 ioodvbdlimc2lem 45930 stoweidlem62 46058 stirlinglem1 46070 |
| Copyright terms: Public domain | W3C validator |