Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rphalfcl 12863 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7342 / cdiv 11738 2c2 12134 ℝ+crp 12836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-2 12142 df-rp 12837 |
This theorem is referenced by: nnesq 14048 rlimuni 15359 climuni 15361 reccn2 15406 iseralt 15496 mertenslem1 15696 mertenslem2 15697 ege2le3 15899 rpcoshcl 15966 sqrt2irrlem 16057 4sqlem7 16743 ssblex 23687 methaus 23782 met2ndci 23784 metustexhalf 23818 cfilucfil 23821 nlmvscnlem2 23955 nlmvscnlem1 23956 nrginvrcnlem 23961 reperflem 24087 icccmplem2 24092 metdcnlem 24105 metnrmlem2 24129 metnrmlem3 24130 ipcnlem2 24514 ipcnlem1 24515 minveclem3 24699 ovollb2lem 24758 ovolunlem2 24768 uniioombl 24859 itg2cnlem2 25033 itg2cn 25034 lhop1lem 25283 lhop1 25284 aaliou2b 25607 ulmcn 25664 pserdvlem1 25692 pserdv 25694 cxpcn3lem 26006 lgamgulmlem3 26286 lgamucov 26293 ftalem2 26329 bposlem7 26544 bposlem9 26546 lgsquadlem2 26635 chebbnd1lem2 26724 pntibndlem3 26846 pntibnd 26847 pntlemr 26856 lt2addrd 31359 tpr2rico 32158 knoppndvlem17 34845 tan2h 35923 mblfinlem4 35971 sstotbnd2 36086 3lexlogpow2ineq2 40370 dstregt0 43205 suplesup 43263 infleinf 43296 lptre2pt 43567 0ellimcdiv 43576 limsupgtlem 43704 ioodvbdlimc1lem2 43859 ioodvbdlimc2lem 43861 stoweidlem62 43989 stirlinglem1 44001 |
Copyright terms: Public domain | W3C validator |