Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalfcld | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rphalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rphalfcl 12686 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 / cdiv 11562 2c2 11958 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 |
This theorem is referenced by: nnesq 13870 rlimuni 15187 climuni 15189 reccn2 15234 iseralt 15324 mertenslem1 15524 mertenslem2 15525 ege2le3 15727 rpcoshcl 15794 sqrt2irrlem 15885 4sqlem7 16573 ssblex 23489 methaus 23582 met2ndci 23584 metustexhalf 23618 cfilucfil 23621 nlmvscnlem2 23755 nlmvscnlem1 23756 nrginvrcnlem 23761 reperflem 23887 icccmplem2 23892 metdcnlem 23905 metnrmlem2 23929 metnrmlem3 23930 ipcnlem2 24313 ipcnlem1 24314 minveclem3 24498 ovollb2lem 24557 ovolunlem2 24567 uniioombl 24658 itg2cnlem2 24832 itg2cn 24833 lhop1lem 25082 lhop1 25083 aaliou2b 25406 ulmcn 25463 pserdvlem1 25491 pserdv 25493 cxpcn3lem 25805 lgamgulmlem3 26085 lgamucov 26092 ftalem2 26128 bposlem7 26343 bposlem9 26345 lgsquadlem2 26434 chebbnd1lem2 26523 pntibndlem3 26645 pntibnd 26646 pntlemr 26655 lt2addrd 30976 tpr2rico 31764 knoppndvlem17 34635 tan2h 35696 mblfinlem4 35744 sstotbnd2 35859 3lexlogpow2ineq2 39995 dstregt0 42709 suplesup 42768 infleinf 42801 lptre2pt 43071 0ellimcdiv 43080 limsupgtlem 43208 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stoweidlem62 43493 stirlinglem1 43505 |
Copyright terms: Public domain | W3C validator |