Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mopni3 | Structured version Visualization version GIF version |
Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopni.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopni3 | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | mopni2 23555 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) |
3 | 2 | adantr 480 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) |
4 | simp1 1134 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | 1 | mopnss 23507 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
6 | 5 | sselda 3917 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝑋) |
7 | 6 | 3impa 1108 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝑋) |
8 | 4, 7 | jca 511 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋)) |
9 | ssblex 23489 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) | |
10 | 8, 9 | sylan 579 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ (𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) |
11 | 10 | anassrs 467 | . . . 4 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) |
12 | sstr 3925 | . . . . . . 7 ⊢ (((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦) ∧ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) → (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) | |
13 | 12 | expcom 413 | . . . . . 6 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦) → (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
14 | 13 | anim2d 611 | . . . . 5 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦)) → (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
15 | 14 | reximdv 3201 | . . . 4 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → (∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
16 | 11, 15 | syl5com 31 | . . 3 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
17 | 16 | rexlimdva 3212 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
18 | 3, 17 | mpd 15 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 < clt 10940 ℝ+crp 12659 ∞Metcxmet 20495 ballcbl 20497 MetOpencmopn 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 |
This theorem is referenced by: bcthlem5 24397 lhop1lem 25082 ulmdvlem3 25466 efopn 25718 opnrebl2 34437 |
Copyright terms: Public domain | W3C validator |