| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopni3 | Structured version Visualization version GIF version | ||
| Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| mopni.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopni3 | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | mopni2 24381 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) |
| 3 | 2 | adantr 480 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) |
| 4 | simp1 1136 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 5 | 1 | mopnss 24334 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| 6 | 5 | sselda 3946 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝑋) |
| 7 | 6 | 3impa 1109 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝑋) |
| 8 | 4, 7 | jca 511 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋)) |
| 9 | ssblex 24316 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) | |
| 10 | 8, 9 | sylan 580 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ (𝑅 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) |
| 11 | 10 | anassrs 467 | . . . 4 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦))) |
| 12 | sstr 3955 | . . . . . . 7 ⊢ (((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦) ∧ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴) → (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) | |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦) → (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
| 14 | 13 | anim2d 612 | . . . . 5 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦)) → (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
| 15 | 14 | reximdv 3148 | . . . 4 ⊢ ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → (∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑦)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
| 16 | 11, 15 | syl5com 31 | . . 3 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
| 17 | 16 | rexlimdva 3134 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝑃(ball‘𝐷)𝑦) ⊆ 𝐴 → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))) |
| 18 | 3, 17 | mpd 15 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 < clt 11208 ℝ+crp 12951 ∞Metcxmet 21249 ballcbl 21251 MetOpencmopn 21254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: bcthlem5 25228 lhop1lem 25918 ulmdvlem3 26311 efopn 26567 opnrebl2 36309 |
| Copyright terms: Public domain | W3C validator |