MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsid Structured version   Visualization version   GIF version

Theorem tsmsid 24062
Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
tsmsid (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmsid
StepHypRef Expression
1 tsmsid.2 . . . . . 6 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 eqid 2727 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
42, 3istps 22854 . . . . . 6 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
51, 4sylib 217 . . . . 5 (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
6 topontop 22833 . . . . 5 ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top)
75, 6syl 17 . . . 4 (𝜑 → (TopOpen‘𝐺) ∈ Top)
8 tsmsid.z . . . . . . 7 0 = (0g𝐺)
9 tsmsid.1 . . . . . . 7 (𝜑𝐺 ∈ CMnd)
10 tsmsid.a . . . . . . 7 (𝜑𝐴𝑉)
11 tsmsid.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
12 tsmsid.w . . . . . . 7 (𝜑𝐹 finSupp 0 )
132, 8, 9, 10, 11, 12gsumcl 19875 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
1413snssd 4815 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
15 toponuni 22834 . . . . . 6 ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = (TopOpen‘𝐺))
165, 15syl 17 . . . . 5 (𝜑𝐵 = (TopOpen‘𝐺))
1714, 16sseqtrd 4020 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ (TopOpen‘𝐺))
18 eqid 2727 . . . . 5 (TopOpen‘𝐺) = (TopOpen‘𝐺)
1918sscls 22978 . . . 4 (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}))
207, 17, 19syl2anc 582 . . 3 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}))
21 ovex 7457 . . . 4 (𝐺 Σg 𝐹) ∈ V
2221snss 4792 . . 3 ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}))
2320, 22sylibr 233 . 2 (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}))
242, 8, 9, 1, 10, 11, 12, 3tsmsgsum 24061 . 2 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}))
2523, 24eleqtrrd 2831 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3947  {csn 4630   cuni 4910   class class class wbr 5150  wf 6547  cfv 6551  (class class class)co 7424   finSupp cfsupp 9391  Basecbs 17185  TopOpenctopn 17408  0gc0g 17426   Σg cgsu 17427  CMndccmn 19740  Topctop 22813  TopOnctopon 22830  TopSpctps 22852  clsccl 22940   tsums ctsu 24048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-seq 14005  df-hash 14328  df-0g 17428  df-gsum 17429  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-cntz 19273  df-cmn 19742  df-fbas 21281  df-fg 21282  df-top 22814  df-topon 22831  df-topsp 22853  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-tsms 24049
This theorem is referenced by:  haustsmsid  24063  tsms0  24064  tayl0  26314  esumgsum  33669
  Copyright terms: Public domain W3C validator