![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsid | Structured version Visualization version GIF version |
Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsmsid.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsid.z | ⊢ 0 = (0g‘𝐺) |
tsmsid.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmsid.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmsid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmsid.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
tsmsid.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
tsmsid | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsid.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
2 | tsmsid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2726 | . . . . . . 7 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 22787 | . . . . . 6 ⊢ (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
5 | 1, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
6 | topontop 22766 | . . . . 5 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ Top) |
8 | tsmsid.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
9 | tsmsid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
10 | tsmsid.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | tsmsid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | tsmsid.w | . . . . . . 7 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
13 | 2, 8, 9, 10, 11, 12 | gsumcl 19833 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
14 | 13 | snssd 4807 | . . . . 5 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) |
15 | toponuni 22767 | . . . . . 6 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = ∪ (TopOpen‘𝐺)) | |
16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 = ∪ (TopOpen‘𝐺)) |
17 | 14, 16 | sseqtrd 4017 | . . . 4 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) |
18 | eqid 2726 | . . . . 5 ⊢ ∪ (TopOpen‘𝐺) = ∪ (TopOpen‘𝐺) | |
19 | 18 | sscls 22911 | . . . 4 ⊢ (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
20 | 7, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
21 | ovex 7437 | . . . 4 ⊢ (𝐺 Σg 𝐹) ∈ V | |
22 | 21 | snss 4784 | . . 3 ⊢ ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
23 | 20, 22 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
24 | 2, 8, 9, 1, 10, 11, 12, 3 | tsmsgsum 23994 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
25 | 23, 24 | eleqtrrd 2830 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 {csn 4623 ∪ cuni 4902 class class class wbr 5141 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 finSupp cfsupp 9360 Basecbs 17151 TopOpenctopn 17374 0gc0g 17392 Σg cgsu 17393 CMndccmn 19698 Topctop 22746 TopOnctopon 22763 TopSpctps 22785 clsccl 22873 tsums ctsu 23981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14294 df-0g 17394 df-gsum 17395 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-cntz 19231 df-cmn 19700 df-fbas 21233 df-fg 21234 df-top 22747 df-topon 22764 df-topsp 22786 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-tsms 23982 |
This theorem is referenced by: haustsmsid 23996 tsms0 23997 tayl0 26247 esumgsum 33573 |
Copyright terms: Public domain | W3C validator |