| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsid | Structured version Visualization version GIF version | ||
| Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| Ref | Expression |
|---|---|
| tsmsid.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmsid.z | ⊢ 0 = (0g‘𝐺) |
| tsmsid.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmsid.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| tsmsid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmsid.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmsid.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| tsmsid | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsid.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 2 | tsmsid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22877 | . . . . . 6 ⊢ (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
| 5 | 1, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
| 6 | topontop 22856 | . . . . 5 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ Top) |
| 8 | tsmsid.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 9 | tsmsid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 10 | tsmsid.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | tsmsid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | tsmsid.w | . . . . . . 7 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 2, 8, 9, 10, 11, 12 | gsumcl 19901 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 14 | 13 | snssd 4790 | . . . . 5 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) |
| 15 | toponuni 22857 | . . . . . 6 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = ∪ (TopOpen‘𝐺)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 = ∪ (TopOpen‘𝐺)) |
| 17 | 14, 16 | sseqtrd 4000 | . . . 4 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) |
| 18 | eqid 2736 | . . . . 5 ⊢ ∪ (TopOpen‘𝐺) = ∪ (TopOpen‘𝐺) | |
| 19 | 18 | sscls 22999 | . . . 4 ⊢ (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 20 | 7, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 21 | ovex 7443 | . . . 4 ⊢ (𝐺 Σg 𝐹) ∈ V | |
| 22 | 21 | snss 4766 | . . 3 ⊢ ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 23 | 20, 22 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 24 | 2, 8, 9, 1, 10, 11, 12, 3 | tsmsgsum 24082 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 25 | 23, 24 | eleqtrrd 2838 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 finSupp cfsupp 9378 Basecbs 17233 TopOpenctopn 17440 0gc0g 17458 Σg cgsu 17459 CMndccmn 19766 Topctop 22836 TopOnctopon 22853 TopSpctps 22875 clsccl 22961 tsums ctsu 24069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cntz 19305 df-cmn 19768 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-topsp 22876 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-tsms 24070 |
| This theorem is referenced by: haustsmsid 24084 tsms0 24085 tayl0 26326 esumgsum 34081 |
| Copyright terms: Public domain | W3C validator |