| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsid | Structured version Visualization version GIF version | ||
| Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
| Ref | Expression |
|---|---|
| tsmsid.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmsid.z | ⊢ 0 = (0g‘𝐺) |
| tsmsid.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmsid.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| tsmsid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmsid.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmsid.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| tsmsid | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsid.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 2 | tsmsid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22850 | . . . . . 6 ⊢ (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
| 5 | 1, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
| 6 | topontop 22829 | . . . . 5 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ Top) |
| 8 | tsmsid.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 9 | tsmsid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 10 | tsmsid.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | tsmsid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | tsmsid.w | . . . . . . 7 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 2, 8, 9, 10, 11, 12 | gsumcl 19829 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 14 | 13 | snssd 4760 | . . . . 5 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) |
| 15 | toponuni 22830 | . . . . . 6 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = ∪ (TopOpen‘𝐺)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 = ∪ (TopOpen‘𝐺)) |
| 17 | 14, 16 | sseqtrd 3967 | . . . 4 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) |
| 18 | eqid 2733 | . . . . 5 ⊢ ∪ (TopOpen‘𝐺) = ∪ (TopOpen‘𝐺) | |
| 19 | 18 | sscls 22972 | . . . 4 ⊢ (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 20 | 7, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 21 | ovex 7385 | . . . 4 ⊢ (𝐺 Σg 𝐹) ∈ V | |
| 22 | 21 | snss 4736 | . . 3 ⊢ ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 23 | 20, 22 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 24 | 2, 8, 9, 1, 10, 11, 12, 3 | tsmsgsum 24055 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
| 25 | 23, 24 | eleqtrrd 2836 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4575 ∪ cuni 4858 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 finSupp cfsupp 9252 Basecbs 17122 TopOpenctopn 17327 0gc0g 17345 Σg cgsu 17346 CMndccmn 19694 Topctop 22809 TopOnctopon 22826 TopSpctps 22848 clsccl 22934 tsums ctsu 24042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-0g 17347 df-gsum 17348 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-cntz 19231 df-cmn 19696 df-fbas 21290 df-fg 21291 df-top 22810 df-topon 22827 df-topsp 22849 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-tsms 24043 |
| This theorem is referenced by: haustsmsid 24057 tsms0 24058 tayl0 26297 esumgsum 34079 |
| Copyright terms: Public domain | W3C validator |