|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tsmsid | Structured version Visualization version GIF version | ||
| Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| tsmsid.b | ⊢ 𝐵 = (Base‘𝐺) | 
| tsmsid.z | ⊢ 0 = (0g‘𝐺) | 
| tsmsid.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| tsmsid.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) | 
| tsmsid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| tsmsid.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| tsmsid.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) | 
| Ref | Expression | 
|---|---|
| tsmsid | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tsmsid.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 2 | tsmsid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22941 | . . . . . 6 ⊢ (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) | 
| 5 | 1, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) | 
| 6 | topontop 22920 | . . . . 5 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ Top) | 
| 8 | tsmsid.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 9 | tsmsid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 10 | tsmsid.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | tsmsid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | tsmsid.w | . . . . . . 7 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 2, 8, 9, 10, 11, 12 | gsumcl 19934 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | 
| 14 | 13 | snssd 4808 | . . . . 5 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) | 
| 15 | toponuni 22921 | . . . . . 6 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = ∪ (TopOpen‘𝐺)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 = ∪ (TopOpen‘𝐺)) | 
| 17 | 14, 16 | sseqtrd 4019 | . . . 4 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) | 
| 18 | eqid 2736 | . . . . 5 ⊢ ∪ (TopOpen‘𝐺) = ∪ (TopOpen‘𝐺) | |
| 19 | 18 | sscls 23065 | . . . 4 ⊢ (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) | 
| 20 | 7, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) | 
| 21 | ovex 7465 | . . . 4 ⊢ (𝐺 Σg 𝐹) ∈ V | |
| 22 | 21 | snss 4784 | . . 3 ⊢ ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) | 
| 23 | 20, 22 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) | 
| 24 | 2, 8, 9, 1, 10, 11, 12, 3 | tsmsgsum 24148 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) | 
| 25 | 23, 24 | eleqtrrd 2843 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 {csn 4625 ∪ cuni 4906 class class class wbr 5142 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 finSupp cfsupp 9402 Basecbs 17248 TopOpenctopn 17467 0gc0g 17485 Σg cgsu 17486 CMndccmn 19799 Topctop 22900 TopOnctopon 22917 TopSpctps 22939 clsccl 23027 tsums ctsu 24135 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-0g 17487 df-gsum 17488 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-cntz 19336 df-cmn 19801 df-fbas 21362 df-fg 21363 df-top 22901 df-topon 22918 df-topsp 22940 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-tsms 24136 | 
| This theorem is referenced by: haustsmsid 24150 tsms0 24151 tayl0 26404 esumgsum 34047 | 
| Copyright terms: Public domain | W3C validator |