MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfgt0 Structured version   Visualization version   GIF version

Theorem halfgt0 12461
Description: One-half is greater than zero. (Contributed by NM, 24-Feb-2005.)
Assertion
Ref Expression
halfgt0 0 < (1 / 2)

Proof of Theorem halfgt0
StepHypRef Expression
1 2re 12319 . 2 2 ∈ ℝ
2 2pos 12348 . 2 0 < 2
31, 2recgt0ii 12153 1 0 < (1 / 2)
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5124  (class class class)co 7410  0cc0 11134  1c1 11135   < clt 11274   / cdiv 11899  2c2 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-2 12308
This theorem is referenced by:  halfge0  12462  geo2sum  15894  oddge22np1  16373  ltoddhalfle  16385  halfleoddlt  16386  itg2monolem3  25710  aaliou3lem1  26307  aaliou3lem2  26308  aaliou3lem3  26309  cxpsqrtlem  26668  cxpsqrt  26669  chordthmlem4  26802  asinsin  26859  gausslemma2dlem1a  27333  chtppilim  27443  dnizeq0  36498  dnizphlfeqhlf  36499  cnndvlem1  36560  cntotbnd  37825  tan3rdpi  42366  halffl  45292  stoweidlem5  46001  stoweidlem28  46024  fourierdlem103  46205  fourierdlem104  46206  ceilhalf1  47330
  Copyright terms: Public domain W3C validator