Step | Hyp | Ref
| Expression |
1 | | df-rab 3433 |
. . 3
β’ {π’ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©} = {π’ β£ (π’ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©)} |
2 | | dib1dim2.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
3 | | dib1dim2.h |
. . . 4
β’ π» = (LHypβπΎ) |
4 | | dib1dim2.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
5 | | dib1dim2.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
6 | | eqid 2732 |
. . . 4
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
7 | | dib1dim2.o |
. . . 4
β’ π = (β β π β¦ ( I βΎ π΅)) |
8 | | dib1dim2.i |
. . . 4
β’ πΌ = ((DIsoBβπΎ)βπ) |
9 | 2, 3, 4, 5, 6, 7, 8 | dib1dim 40024 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π
βπΉ)) = {π’ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©}) |
10 | | dib1dim2.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
11 | | eqid 2732 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
12 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
13 | 3, 6, 10, 11, 12 | dvhbase 39942 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
14 | 13 | adantr 481 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
15 | 14 | rexeqdv 3326 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©) β βπ£ β ((TEndoβπΎ)βπ)π’ = (π£( Β·π
βπ)β¨πΉ, πβ©))) |
16 | | simpll 765 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (πΎ β HL β§ π β π»)) |
17 | | simpr 485 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β π£ β ((TEndoβπΎ)βπ)) |
18 | | simplr 767 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β πΉ β π) |
19 | 2, 3, 4, 6, 7 | tendo0cl 39649 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β π») β π β ((TEndoβπΎ)βπ)) |
20 | 19 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β π β ((TEndoβπΎ)βπ)) |
21 | | eqid 2732 |
. . . . . . . . . 10
β’ (
Β·π βπ) = ( Β·π
βπ) |
22 | 3, 4, 6, 10, 21 | dvhopvsca 39961 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π£ β ((TEndoβπΎ)βπ) β§ πΉ β π β§ π β ((TEndoβπΎ)βπ))) β (π£( Β·π
βπ)β¨πΉ, πβ©) = β¨(π£βπΉ), (π£ β π)β©) |
23 | 16, 17, 18, 20, 22 | syl13anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π£( Β·π
βπ)β¨πΉ, πβ©) = β¨(π£βπΉ), (π£ β π)β©) |
24 | 2, 3, 4, 6, 7 | tendo0mulr 39686 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π£ β ((TEndoβπΎ)βπ)) β (π£ β π) = π) |
25 | 24 | adantlr 713 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π£ β π) = π) |
26 | 25 | opeq2d 4879 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β β¨(π£βπΉ), (π£ β π)β© = β¨(π£βπΉ), πβ©) |
27 | 23, 26 | eqtrd 2772 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π£( Β·π
βπ)β¨πΉ, πβ©) = β¨(π£βπΉ), πβ©) |
28 | 27 | eqeq2d 2743 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π’ = (π£( Β·π
βπ)β¨πΉ, πβ©) β π’ = β¨(π£βπΉ), πβ©)) |
29 | 28 | rexbidva 3176 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ£ β ((TEndoβπΎ)βπ)π’ = (π£( Β·π
βπ)β¨πΉ, πβ©) β βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©)) |
30 | 3, 4, 6 | tendocl 39626 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ π£ β ((TEndoβπΎ)βπ) β§ πΉ β π) β (π£βπΉ) β π) |
31 | 30 | 3expa 1118 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ π£ β ((TEndoβπΎ)βπ)) β§ πΉ β π) β (π£βπΉ) β π) |
32 | 31 | an32s 650 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π£βπΉ) β π) |
33 | | opelxpi 5712 |
. . . . . . . . 9
β’ (((π£βπΉ) β π β§ π β ((TEndoβπΎ)βπ)) β β¨(π£βπΉ), πβ© β (π Γ ((TEndoβπΎ)βπ))) |
34 | 32, 20, 33 | syl2anc 584 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β β¨(π£βπΉ), πβ© β (π Γ ((TEndoβπΎ)βπ))) |
35 | | eleq1a 2828 |
. . . . . . . 8
β’
(β¨(π£βπΉ), πβ© β (π Γ ((TEndoβπΎ)βπ)) β (π’ = β¨(π£βπΉ), πβ© β π’ β (π Γ ((TEndoβπΎ)βπ)))) |
36 | 34, 35 | syl 17 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π) β§ π£ β ((TEndoβπΎ)βπ)) β (π’ = β¨(π£βπΉ), πβ© β π’ β (π Γ ((TEndoβπΎ)βπ)))) |
37 | 36 | rexlimdva 3155 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ© β π’ β (π Γ ((TEndoβπΎ)βπ)))) |
38 | 37 | pm4.71rd 563 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ© β (π’ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©))) |
39 | 15, 29, 38 | 3bitrd 304 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©) β (π’ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©))) |
40 | 39 | abbidv 2801 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β {π’ β£ βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©)} = {π’ β£ (π’ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ£ β ((TEndoβπΎ)βπ)π’ = β¨(π£βπΉ), πβ©)}) |
41 | 1, 9, 40 | 3eqtr4a 2798 |
. 2
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π
βπΉ)) = {π’ β£ βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©)}) |
42 | | simpl 483 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΎ β HL β§ π β π»)) |
43 | 3, 10, 42 | dvhlmod 39969 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β π β LMod) |
44 | | simpr 485 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β πΉ β π) |
45 | 19 | adantr 481 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β π β ((TEndoβπΎ)βπ)) |
46 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
47 | 3, 4, 6, 10, 46 | dvhelvbasei 39947 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β ((TEndoβπΎ)βπ))) β β¨πΉ, πβ© β (Baseβπ)) |
48 | 42, 44, 45, 47 | syl12anc 835 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β β¨πΉ, πβ© β (Baseβπ)) |
49 | | dib1dim2.n |
. . . 4
β’ π = (LSpanβπ) |
50 | 11, 12, 46, 21, 49 | lspsn 20605 |
. . 3
β’ ((π β LMod β§ β¨πΉ, πβ© β (Baseβπ)) β (πβ{β¨πΉ, πβ©}) = {π’ β£ βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©)}) |
51 | 43, 48, 50 | syl2anc 584 |
. 2
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πβ{β¨πΉ, πβ©}) = {π’ β£ βπ£ β (Baseβ(Scalarβπ))π’ = (π£( Β·π
βπ)β¨πΉ, πβ©)}) |
52 | 41, 51 | eqtr4d 2775 |
1
β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π
βπΉ)) = (πβ{β¨πΉ, πβ©})) |