| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3437 |
. . 3
⊢ {𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉} = {𝑢 ∣ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉)} |
| 2 | | dib1dim2.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 3 | | dib1dim2.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 4 | | dib1dim2.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 5 | | dib1dim2.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 6 | | eqid 2737 |
. . . 4
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
| 7 | | dib1dim2.o |
. . . 4
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 8 | | dib1dim2.i |
. . . 4
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| 9 | 2, 3, 4, 5, 6, 7, 8 | dib1dim 41167 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉}) |
| 10 | | dib1dim2.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 11 | | eqid 2737 |
. . . . . . . 8
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
| 13 | 3, 6, 10, 11, 12 | dvhbase 41085 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 15 | 14 | rexeqdv 3327 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) ↔ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉))) |
| 16 | | simpll 767 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 18 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹 ∈ 𝑇) |
| 19 | 2, 3, 4, 6, 7 | tendo0cl 40792 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 21 | | eqid 2737 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 22 | 3, 4, 6, 10, 21 | dvhopvsca 41104 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑣 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) = 〈(𝑣‘𝐹), (𝑣 ∘ 𝑂)〉) |
| 23 | 16, 17, 18, 20, 22 | syl13anc 1374 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) = 〈(𝑣‘𝐹), (𝑣 ∘ 𝑂)〉) |
| 24 | 2, 3, 4, 6, 7 | tendo0mulr 40829 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣 ∘ 𝑂) = 𝑂) |
| 25 | 24 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣 ∘ 𝑂) = 𝑂) |
| 26 | 25 | opeq2d 4880 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 〈(𝑣‘𝐹), (𝑣 ∘ 𝑂)〉 = 〈(𝑣‘𝐹), 𝑂〉) |
| 27 | 23, 26 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) = 〈(𝑣‘𝐹), 𝑂〉) |
| 28 | 27 | eqeq2d 2748 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) ↔ 𝑢 = 〈(𝑣‘𝐹), 𝑂〉)) |
| 29 | 28 | rexbidva 3177 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) ↔ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉)) |
| 30 | 3, 4, 6 | tendocl 40769 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹 ∈ 𝑇) → (𝑣‘𝐹) ∈ 𝑇) |
| 31 | 30 | 3expa 1119 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑣‘𝐹) ∈ 𝑇) |
| 32 | 31 | an32s 652 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣‘𝐹) ∈ 𝑇) |
| 33 | | opelxpi 5722 |
. . . . . . . . 9
⊢ (((𝑣‘𝐹) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → 〈(𝑣‘𝐹), 𝑂〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 34 | 32, 20, 33 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 〈(𝑣‘𝐹), 𝑂〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 35 | | eleq1a 2836 |
. . . . . . . 8
⊢
(〈(𝑣‘𝐹), 𝑂〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑢 = 〈(𝑣‘𝐹), 𝑂〉 → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑢 = 〈(𝑣‘𝐹), 𝑂〉 → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 37 | 36 | rexlimdva 3155 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉 → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 38 | 37 | pm4.71rd 562 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉 ↔ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉))) |
| 39 | 15, 29, 38 | 3bitrd 305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉) ↔ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉))) |
| 40 | 39 | abbidv 2808 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = 〈(𝑣‘𝐹), 𝑂〉)}) |
| 41 | 1, 9, 40 | 3eqtr4a 2803 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉)}) |
| 42 | | simpl 482 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 43 | 3, 10, 42 | dvhlmod 41112 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑈 ∈ LMod) |
| 44 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) |
| 45 | 19 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 46 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 47 | 3, 4, 6, 10, 46 | dvhelvbasei 41090 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐹, 𝑂〉 ∈ (Base‘𝑈)) |
| 48 | 42, 44, 45, 47 | syl12anc 837 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 〈𝐹, 𝑂〉 ∈ (Base‘𝑈)) |
| 49 | | dib1dim2.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑈) |
| 50 | 11, 12, 46, 21, 49 | lspsn 21000 |
. . 3
⊢ ((𝑈 ∈ LMod ∧ 〈𝐹, 𝑂〉 ∈ (Base‘𝑈)) → (𝑁‘{〈𝐹, 𝑂〉}) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉)}) |
| 51 | 43, 48, 50 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑁‘{〈𝐹, 𝑂〉}) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠
‘𝑈)〈𝐹, 𝑂〉)}) |
| 52 | 41, 51 | eqtr4d 2780 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{〈𝐹, 𝑂〉})) |