MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inagswap Structured version   Visualization version   GIF version

Theorem inagswap 27338
Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagflat.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
Assertion
Ref Expression
inagswap (𝜑𝑋(inA‘𝐺)⟨“𝐶𝐵𝐴”⟩)

Proof of Theorem inagswap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inagswap.1 . . . . . 6 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
2 isinag.p . . . . . . 7 𝑃 = (Base‘𝐺)
3 isinag.i . . . . . . 7 𝐼 = (Itv‘𝐺)
4 isinag.k . . . . . . 7 𝐾 = (hlG‘𝐺)
5 isinag.x . . . . . . 7 (𝜑𝑋𝑃)
6 isinag.a . . . . . . 7 (𝜑𝐴𝑃)
7 isinag.b . . . . . . 7 (𝜑𝐵𝑃)
8 isinag.c . . . . . . 7 (𝜑𝐶𝑃)
9 inagflat.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
102, 3, 4, 5, 6, 7, 8, 9isinag 27335 . . . . . 6 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
111, 10mpbid 231 . . . . 5 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
1211simpld 495 . . . 4 (𝜑 → (𝐴𝐵𝐶𝐵𝑋𝐵))
1312simp2d 1142 . . 3 (𝜑𝐶𝐵)
1412simp1d 1141 . . 3 (𝜑𝐴𝐵)
1512simp3d 1143 . . 3 (𝜑𝑋𝐵)
1613, 14, 153jca 1127 . 2 (𝜑 → (𝐶𝐵𝐴𝐵𝑋𝐵))
1711simprd 496 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
18 eqid 2737 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
1993ad2ant1 1132 . . . . . . 7 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
2063ad2ant1 1132 . . . . . . 7 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
21 simp2 1136 . . . . . . 7 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥𝑃)
2283ad2ant1 1132 . . . . . . 7 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
23 simp3 1137 . . . . . . 7 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐴𝐼𝐶))
242, 18, 3, 19, 20, 21, 22, 23tgbtwncom 26985 . . . . . 6 ((𝜑𝑥𝑃𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐶𝐼𝐴))
25243expia 1120 . . . . 5 ((𝜑𝑥𝑃) → (𝑥 ∈ (𝐴𝐼𝐶) → 𝑥 ∈ (𝐶𝐼𝐴)))
2625anim1d 611 . . . 4 ((𝜑𝑥𝑃) → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
2726reximdva 3162 . . 3 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
2817, 27mpd 15 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
292, 3, 4, 5, 8, 7, 6, 9isinag 27335 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐶𝐵𝐴”⟩ ↔ ((𝐶𝐵𝐴𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
3016, 28, 29mpbir2and 710 1 (𝜑𝑋(inA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wrex 3071   class class class wbr 5087  cfv 6466  (class class class)co 7317  ⟨“cs3 14634  Basecbs 16989  distcds 17048  TarskiGcstrkg 26924  Itvcitv 26930  hlGchlg 27097  inAcinag 27332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-z 12400  df-uz 12663  df-fz 13320  df-fzo 13463  df-hash 14125  df-word 14297  df-concat 14353  df-s1 14380  df-s2 14640  df-s3 14641  df-trkgc 26945  df-trkgb 26946  df-trkgcb 26947  df-trkg 26950  df-inag 27334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator