| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inagswap | Structured version Visualization version GIF version | ||
| Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| Ref | Expression |
|---|---|
| isinag.p | ⊢ 𝑃 = (Base‘𝐺) |
| isinag.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isinag.k | ⊢ 𝐾 = (hlG‘𝐺) |
| isinag.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| isinag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| isinag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| isinag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| inagflat.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| inagswap.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) |
| Ref | Expression |
|---|---|
| inagswap | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inagswap.1 | . . . . . 6 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | |
| 2 | isinag.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | isinag.i | . . . . . . 7 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | isinag.k | . . . . . . 7 ⊢ 𝐾 = (hlG‘𝐺) | |
| 5 | isinag.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | isinag.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | isinag.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | isinag.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | inagflat.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | isinag 28816 | . . . . . 6 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
| 11 | 1, 10 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 12 | 11 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
| 13 | 12 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 14 | 12 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 15 | 12 | simp3d 1144 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝐵) |
| 16 | 13, 14, 15 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
| 17 | 11 | simprd 495 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
| 18 | eqid 2731 | . . . . . . 7 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 19 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
| 20 | 6 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
| 21 | simp2 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ 𝑃) | |
| 22 | 8 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
| 23 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐴𝐼𝐶)) | |
| 24 | 2, 18, 3, 19, 20, 21, 22, 23 | tgbtwncom 28466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐶𝐼𝐴)) |
| 25 | 24 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑥 ∈ (𝐴𝐼𝐶) → 𝑥 ∈ (𝐶𝐼𝐴))) |
| 26 | 25 | anim1d 611 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 27 | 26 | reximdva 3145 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 28 | 17, 27 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
| 29 | 2, 3, 4, 5, 8, 7, 6, 9 | isinag 28816 | . 2 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉 ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
| 30 | 16, 28, 29 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 Itvcitv 28411 hlGchlg 28578 inAcinag 28813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28426 df-trkgb 28427 df-trkgcb 28428 df-trkg 28431 df-inag 28815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |