| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inagswap | Structured version Visualization version GIF version | ||
| Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
| Ref | Expression |
|---|---|
| isinag.p | ⊢ 𝑃 = (Base‘𝐺) |
| isinag.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isinag.k | ⊢ 𝐾 = (hlG‘𝐺) |
| isinag.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| isinag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| isinag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| isinag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| inagflat.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| inagswap.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) |
| Ref | Expression |
|---|---|
| inagswap | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inagswap.1 | . . . . . 6 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | |
| 2 | isinag.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | isinag.i | . . . . . . 7 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | isinag.k | . . . . . . 7 ⊢ 𝐾 = (hlG‘𝐺) | |
| 5 | isinag.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | isinag.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | isinag.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | isinag.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | inagflat.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | isinag 28741 | . . . . . 6 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
| 11 | 1, 10 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 12 | 11 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
| 13 | 12 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 14 | 12 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 15 | 12 | simp3d 1144 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝐵) |
| 16 | 13, 14, 15 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
| 17 | 11 | simprd 495 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 19 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
| 20 | 6 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
| 21 | simp2 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ 𝑃) | |
| 22 | 8 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
| 23 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐴𝐼𝐶)) | |
| 24 | 2, 18, 3, 19, 20, 21, 22, 23 | tgbtwncom 28391 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐶𝐼𝐴)) |
| 25 | 24 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑥 ∈ (𝐴𝐼𝐶) → 𝑥 ∈ (𝐶𝐼𝐴))) |
| 26 | 25 | anim1d 611 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 27 | 26 | reximdva 3146 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
| 28 | 17, 27 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
| 29 | 2, 3, 4, 5, 8, 7, 6, 9 | isinag 28741 | . 2 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉 ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
| 30 | 16, 28, 29 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 〈“cs3 14784 Basecbs 17155 distcds 17205 TarskiGcstrkg 28330 Itvcitv 28336 hlGchlg 28503 inAcinag 28738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-trkgc 28351 df-trkgb 28352 df-trkgcb 28353 df-trkg 28356 df-inag 28740 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |