MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacgr Structured version   Visualization version   GIF version

Theorem oacgr 28754
Description: Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
oacgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
oacgr.2 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
oacgr.3 (𝜑𝐵𝐴)
oacgr.4 (𝜑𝐵𝐶)
oacgr.5 (𝜑𝐵𝐷)
oacgr.6 (𝜑𝐵𝐹)
Assertion
Ref Expression
oacgr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem oacgr
StepHypRef Expression
1 dfcgra2.p . 2 𝑃 = (Base‘𝐺)
2 dfcgra2.i . 2 𝐼 = (Itv‘𝐺)
3 dfcgra2.g . 2 (𝜑𝐺 ∈ TarskiG)
4 eqid 2726 . 2 (hlG‘𝐺) = (hlG‘𝐺)
5 dfcgra2.a . 2 (𝜑𝐴𝑃)
6 dfcgra2.b . 2 (𝜑𝐵𝑃)
7 dfcgra2.c . 2 (𝜑𝐶𝑃)
8 oacgr.3 . . . 4 (𝜑𝐵𝐴)
98necomd 2986 . . 3 (𝜑𝐴𝐵)
10 oacgr.4 . . 3 (𝜑𝐵𝐶)
111, 2, 3, 4, 5, 6, 7, 9, 10cgraswap 28742 . 2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
12 dfcgra2.d . 2 (𝜑𝐷𝑃)
13 dfcgra2.f . 2 (𝜑𝐹𝑃)
14 dfcgra2.m . . 3 = (dist‘𝐺)
15 oacgr.6 . . . . 5 (𝜑𝐵𝐹)
1615necomd 2986 . . . 4 (𝜑𝐹𝐵)
171, 2, 3, 4, 13, 6, 5, 16, 8cgraswap 28742 . . 3 (𝜑 → ⟨“𝐹𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐹”⟩)
18 oacgr.2 . . . 4 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
191, 14, 2, 3, 7, 6, 13, 18tgbtwncom 28410 . . 3 (𝜑𝐵 ∈ (𝐹𝐼𝐶))
20 oacgr.1 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
21 oacgr.5 . . 3 (𝜑𝐵𝐷)
221, 2, 14, 3, 13, 6, 5, 5, 6, 13, 7, 12, 17, 19, 20, 10, 21sacgr 28753 . 2 (𝜑 → ⟨“𝐶𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
231, 2, 3, 4, 5, 6, 7, 7, 6, 5, 11, 12, 6, 13, 22cgratr 28745 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5144  cfv 6544  (class class class)co 7414  ⟨“cs3 14844  Basecbs 17206  distcds 17268  TarskiGcstrkg 28349  Itvcitv 28355  hlGchlg 28522  cgrAccgra 28729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oadd 8490  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-2 12319  df-3 12320  df-n0 12517  df-xnn0 12589  df-z 12603  df-uz 12867  df-fz 13531  df-fzo 13674  df-hash 14341  df-word 14516  df-concat 14572  df-s1 14597  df-s2 14850  df-s3 14851  df-trkgc 28370  df-trkgb 28371  df-trkgcb 28372  df-trkg 28375  df-cgrg 28433  df-leg 28505  df-hlg 28523  df-mir 28575  df-cgra 28730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator