Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oacgr | Structured version Visualization version GIF version |
Description: Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
Ref | Expression |
---|---|
dfcgra2.p | ⊢ 𝑃 = (Base‘𝐺) |
dfcgra2.i | ⊢ 𝐼 = (Itv‘𝐺) |
dfcgra2.m | ⊢ − = (dist‘𝐺) |
dfcgra2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
dfcgra2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
dfcgra2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
dfcgra2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
dfcgra2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
dfcgra2.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
dfcgra2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
oacgr.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
oacgr.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐹)) |
oacgr.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
oacgr.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
oacgr.5 | ⊢ (𝜑 → 𝐵 ≠ 𝐷) |
oacgr.6 | ⊢ (𝜑 → 𝐵 ≠ 𝐹) |
Ref | Expression |
---|---|
oacgr | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐵𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcgra2.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | dfcgra2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | dfcgra2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
4 | eqid 2739 | . 2 ⊢ (hlG‘𝐺) = (hlG‘𝐺) | |
5 | dfcgra2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | dfcgra2.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | dfcgra2.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | oacgr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
9 | 8 | necomd 2999 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | oacgr.4 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 9, 10 | cgraswap 27060 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐶𝐵𝐴”〉) |
12 | dfcgra2.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | dfcgra2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
14 | dfcgra2.m | . . 3 ⊢ − = (dist‘𝐺) | |
15 | oacgr.6 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐹) | |
16 | 15 | necomd 2999 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 𝐵) |
17 | 1, 2, 3, 4, 13, 6, 5, 16, 8 | cgraswap 27060 | . . 3 ⊢ (𝜑 → 〈“𝐹𝐵𝐴”〉(cgrA‘𝐺)〈“𝐴𝐵𝐹”〉) |
18 | oacgr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐹)) | |
19 | 1, 14, 2, 3, 7, 6, 13, 18 | tgbtwncom 26728 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐹𝐼𝐶)) |
20 | oacgr.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
21 | oacgr.5 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐷) | |
22 | 1, 2, 14, 3, 13, 6, 5, 5, 6, 13, 7, 12, 17, 19, 20, 10, 21 | sacgr 27071 | . 2 ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉(cgrA‘𝐺)〈“𝐷𝐵𝐹”〉) |
23 | 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 11, 12, 6, 13, 22 | cgratr 27063 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐵𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 〈“cs3 14458 Basecbs 16815 distcds 16872 TarskiGcstrkg 26668 Itvcitv 26674 hlGchlg 26840 cgrAccgra 27047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-oadd 8248 df-er 8433 df-map 8552 df-pm 8553 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-dju 9565 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-n0 12139 df-xnn0 12211 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-hash 13948 df-word 14121 df-concat 14177 df-s1 14204 df-s2 14464 df-s3 14465 df-trkgc 26688 df-trkgb 26689 df-trkgcb 26690 df-trkg 26693 df-cgrg 26751 df-leg 26823 df-hlg 26841 df-mir 26893 df-cgra 27048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |