MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacgr Structured version   Visualization version   GIF version

Theorem oacgr 28766
Description: Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
oacgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
oacgr.2 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
oacgr.3 (𝜑𝐵𝐴)
oacgr.4 (𝜑𝐵𝐶)
oacgr.5 (𝜑𝐵𝐷)
oacgr.6 (𝜑𝐵𝐹)
Assertion
Ref Expression
oacgr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem oacgr
StepHypRef Expression
1 dfcgra2.p . 2 𝑃 = (Base‘𝐺)
2 dfcgra2.i . 2 𝐼 = (Itv‘𝐺)
3 dfcgra2.g . 2 (𝜑𝐺 ∈ TarskiG)
4 eqid 2730 . 2 (hlG‘𝐺) = (hlG‘𝐺)
5 dfcgra2.a . 2 (𝜑𝐴𝑃)
6 dfcgra2.b . 2 (𝜑𝐵𝑃)
7 dfcgra2.c . 2 (𝜑𝐶𝑃)
8 oacgr.3 . . . 4 (𝜑𝐵𝐴)
98necomd 2981 . . 3 (𝜑𝐴𝐵)
10 oacgr.4 . . 3 (𝜑𝐵𝐶)
111, 2, 3, 4, 5, 6, 7, 9, 10cgraswap 28754 . 2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
12 dfcgra2.d . 2 (𝜑𝐷𝑃)
13 dfcgra2.f . 2 (𝜑𝐹𝑃)
14 dfcgra2.m . . 3 = (dist‘𝐺)
15 oacgr.6 . . . . 5 (𝜑𝐵𝐹)
1615necomd 2981 . . . 4 (𝜑𝐹𝐵)
171, 2, 3, 4, 13, 6, 5, 16, 8cgraswap 28754 . . 3 (𝜑 → ⟨“𝐹𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐹”⟩)
18 oacgr.2 . . . 4 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
191, 14, 2, 3, 7, 6, 13, 18tgbtwncom 28422 . . 3 (𝜑𝐵 ∈ (𝐹𝐼𝐶))
20 oacgr.1 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
21 oacgr.5 . . 3 (𝜑𝐵𝐷)
221, 2, 14, 3, 13, 6, 5, 5, 6, 13, 7, 12, 17, 19, 20, 10, 21sacgr 28765 . 2 (𝜑 → ⟨“𝐶𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
231, 2, 3, 4, 5, 6, 7, 7, 6, 5, 11, 12, 6, 13, 22cgratr 28757 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  hlGchlg 28534  cgrAccgra 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-hlg 28535  df-mir 28587  df-cgra 28742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator