Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > krippen | Structured version Visualization version GIF version |
Description: Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
krippen.m | ⊢ 𝑀 = (𝑆‘𝑋) |
krippen.n | ⊢ 𝑁 = (𝑆‘𝑌) |
krippen.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
krippen.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
krippen.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
krippen.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
krippen.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
krippen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
krippen.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
krippen.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) |
krippen.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) |
krippen.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
krippen.4 | ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
krippen.5 | ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
krippen.6 | ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) |
Ref | Expression |
---|---|
krippen | ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐺 ∈ TarskiG) |
8 | krippen.m | . . 3 ⊢ 𝑀 = (𝑆‘𝑋) | |
9 | krippen.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
10 | krippen.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐴 ∈ 𝑃) |
12 | krippen.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐵 ∈ 𝑃) |
14 | krippen.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ 𝑃) |
16 | krippen.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐸 ∈ 𝑃) |
18 | krippen.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐹 ∈ 𝑃) |
20 | krippen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝑋 ∈ 𝑃) |
22 | krippen.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝑌 ∈ 𝑃) |
24 | krippen.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) | |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝐴𝐼𝐸)) |
26 | krippen.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) | |
27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝐵𝐼𝐹)) |
28 | krippen.3 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) | |
29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
30 | krippen.4 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) | |
31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
32 | krippen.5 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) | |
33 | 32 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐵 = (𝑀‘𝐴)) |
34 | krippen.6 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) | |
35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐹 = (𝑁‘𝐸)) |
36 | eqid 2738 | . . 3 ⊢ (≤G‘𝐺) = (≤G‘𝐺) | |
37 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) | |
38 | 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37 | krippenlem 26955 | . 2 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝑋𝐼𝑌)) |
39 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐺 ∈ TarskiG) |
40 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝑌 ∈ 𝑃) |
41 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ 𝑃) |
42 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝑋 ∈ 𝑃) |
43 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐸 ∈ 𝑃) |
44 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐹 ∈ 𝑃) |
45 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐴 ∈ 𝑃) |
46 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐵 ∈ 𝑃) |
47 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐴𝐼𝐸)) |
48 | 1, 2, 3, 39, 45, 41, 43, 47 | tgbtwncom 26753 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐸𝐼𝐴)) |
49 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐵𝐼𝐹)) |
50 | 1, 2, 3, 39, 46, 41, 44, 49 | tgbtwncom 26753 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐹𝐼𝐵)) |
51 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
52 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
53 | 34 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐹 = (𝑁‘𝐸)) |
54 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐵 = (𝑀‘𝐴)) |
55 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) | |
56 | 1, 2, 3, 4, 5, 39, 9, 8, 43, 44, 41, 45, 46, 40, 42, 48, 50, 51, 52, 53, 54, 36, 55 | krippenlem 26955 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝑌𝐼𝑋)) |
57 | 1, 2, 3, 39, 40, 41, 42, 56 | tgbtwncom 26753 | . 2 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝑋𝐼𝑌)) |
58 | 1, 2, 3, 36, 6, 14, 10, 14, 16 | legtrid 26856 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸) ∨ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴))) |
59 | 38, 57, 58 | mpjaodan 955 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 ≤Gcleg 26847 pInvGcmir 26917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 df-leg 26848 df-mir 26918 |
This theorem is referenced by: footexALT 26983 footexlem1 26984 mideulem2 26999 |
Copyright terms: Public domain | W3C validator |