| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > krippen | Structured version Visualization version GIF version | ||
| Description: Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| krippen.m | ⊢ 𝑀 = (𝑆‘𝑋) |
| krippen.n | ⊢ 𝑁 = (𝑆‘𝑌) |
| krippen.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| krippen.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| krippen.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| krippen.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| krippen.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| krippen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| krippen.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| krippen.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) |
| krippen.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) |
| krippen.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
| krippen.4 | ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
| krippen.5 | ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
| krippen.6 | ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) |
| Ref | Expression |
|---|---|
| krippen | ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐺 ∈ TarskiG) |
| 8 | krippen.m | . . 3 ⊢ 𝑀 = (𝑆‘𝑋) | |
| 9 | krippen.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 10 | krippen.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐴 ∈ 𝑃) |
| 12 | krippen.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐵 ∈ 𝑃) |
| 14 | krippen.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ 𝑃) |
| 16 | krippen.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐸 ∈ 𝑃) |
| 18 | krippen.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐹 ∈ 𝑃) |
| 20 | krippen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝑋 ∈ 𝑃) |
| 22 | krippen.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝑌 ∈ 𝑃) |
| 24 | krippen.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝐴𝐼𝐸)) |
| 26 | krippen.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝐵𝐼𝐹)) |
| 28 | krippen.3 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
| 30 | krippen.4 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
| 32 | krippen.5 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) | |
| 33 | 32 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐵 = (𝑀‘𝐴)) |
| 34 | krippen.6 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) | |
| 35 | 34 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐹 = (𝑁‘𝐸)) |
| 36 | eqid 2729 | . . 3 ⊢ (≤G‘𝐺) = (≤G‘𝐺) | |
| 37 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) | |
| 38 | 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37 | krippenlem 28617 | . 2 ⊢ ((𝜑 ∧ (𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸)) → 𝐶 ∈ (𝑋𝐼𝑌)) |
| 39 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐺 ∈ TarskiG) |
| 40 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝑌 ∈ 𝑃) |
| 41 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ 𝑃) |
| 42 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝑋 ∈ 𝑃) |
| 43 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐸 ∈ 𝑃) |
| 44 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐹 ∈ 𝑃) |
| 45 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐴 ∈ 𝑃) |
| 46 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐵 ∈ 𝑃) |
| 47 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐴𝐼𝐸)) |
| 48 | 1, 2, 3, 39, 45, 41, 43, 47 | tgbtwncom 28415 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐸𝐼𝐴)) |
| 49 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐵𝐼𝐹)) |
| 50 | 1, 2, 3, 39, 46, 41, 44, 49 | tgbtwncom 28415 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝐹𝐼𝐵)) |
| 51 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
| 52 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
| 53 | 34 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐹 = (𝑁‘𝐸)) |
| 54 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐵 = (𝑀‘𝐴)) |
| 55 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) | |
| 56 | 1, 2, 3, 4, 5, 39, 9, 8, 43, 44, 41, 45, 46, 40, 42, 48, 50, 51, 52, 53, 54, 36, 55 | krippenlem 28617 | . . 3 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝑌𝐼𝑋)) |
| 57 | 1, 2, 3, 39, 40, 41, 42, 56 | tgbtwncom 28415 | . 2 ⊢ ((𝜑 ∧ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴)) → 𝐶 ∈ (𝑋𝐼𝑌)) |
| 58 | 1, 2, 3, 36, 6, 14, 10, 14, 16 | legtrid 28518 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴)(≤G‘𝐺)(𝐶 − 𝐸) ∨ (𝐶 − 𝐸)(≤G‘𝐺)(𝐶 − 𝐴))) |
| 59 | 38, 57, 58 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 ≤Gcleg 28509 pInvGcmir 28579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 df-cgrg 28438 df-leg 28510 df-mir 28580 |
| This theorem is referenced by: footexALT 28645 footexlem1 28646 mideulem2 28661 |
| Copyright terms: Public domain | W3C validator |