MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  krippen Structured version   Visualization version   GIF version

Theorem krippen 26485
Description: Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
krippen.m 𝑀 = (𝑆𝑋)
krippen.n 𝑁 = (𝑆𝑌)
krippen.a (𝜑𝐴𝑃)
krippen.b (𝜑𝐵𝑃)
krippen.c (𝜑𝐶𝑃)
krippen.e (𝜑𝐸𝑃)
krippen.f (𝜑𝐹𝑃)
krippen.x (𝜑𝑋𝑃)
krippen.y (𝜑𝑌𝑃)
krippen.1 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
krippen.2 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
krippen.3 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
krippen.4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
krippen.5 (𝜑𝐵 = (𝑀𝐴))
krippen.6 (𝜑𝐹 = (𝑁𝐸))
Assertion
Ref Expression
krippen (𝜑𝐶 ∈ (𝑋𝐼𝑌))

Proof of Theorem krippen
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
76adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐺 ∈ TarskiG)
8 krippen.m . . 3 𝑀 = (𝑆𝑋)
9 krippen.n . . 3 𝑁 = (𝑆𝑌)
10 krippen.a . . . 4 (𝜑𝐴𝑃)
1110adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐴𝑃)
12 krippen.b . . . 4 (𝜑𝐵𝑃)
1312adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵𝑃)
14 krippen.c . . . 4 (𝜑𝐶𝑃)
1514adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶𝑃)
16 krippen.e . . . 4 (𝜑𝐸𝑃)
1716adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐸𝑃)
18 krippen.f . . . 4 (𝜑𝐹𝑃)
1918adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹𝑃)
20 krippen.x . . . 4 (𝜑𝑋𝑃)
2120adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑋𝑃)
22 krippen.y . . . 4 (𝜑𝑌𝑃)
2322adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑌𝑃)
24 krippen.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
2524adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐴𝐼𝐸))
26 krippen.2 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
2726adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐵𝐼𝐹))
28 krippen.3 . . . 4 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
2928adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴) = (𝐶 𝐵))
30 krippen.4 . . . 4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
3130adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐸) = (𝐶 𝐹))
32 krippen.5 . . . 4 (𝜑𝐵 = (𝑀𝐴))
3332adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵 = (𝑀𝐴))
34 krippen.6 . . . 4 (𝜑𝐹 = (𝑁𝐸))
3534adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹 = (𝑁𝐸))
36 eqid 2798 . . 3 (≤G‘𝐺) = (≤G‘𝐺)
37 simpr 488 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸))
381, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37krippenlem 26484 . 2 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝑋𝐼𝑌))
396adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐺 ∈ TarskiG)
4022adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑌𝑃)
4114adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶𝑃)
4220adantr 484 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑋𝑃)
4316adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐸𝑃)
4418adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹𝑃)
4510adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐴𝑃)
4612adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵𝑃)
4724adantr 484 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐴𝐼𝐸))
481, 2, 3, 39, 45, 41, 43, 47tgbtwncom 26282 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐸𝐼𝐴))
4926adantr 484 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐵𝐼𝐹))
501, 2, 3, 39, 46, 41, 44, 49tgbtwncom 26282 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐹𝐼𝐵))
5130adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸) = (𝐶 𝐹))
5228adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐴) = (𝐶 𝐵))
5334adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹 = (𝑁𝐸))
5432adantr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵 = (𝑀𝐴))
55 simpr 488 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴))
561, 2, 3, 4, 5, 39, 9, 8, 43, 44, 41, 45, 46, 40, 42, 48, 50, 51, 52, 53, 54, 36, 55krippenlem 26484 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑌𝐼𝑋))
571, 2, 3, 39, 40, 41, 42, 56tgbtwncom 26282 . 2 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑋𝐼𝑌))
581, 2, 3, 36, 6, 14, 10, 14, 16legtrid 26385 . 2 (𝜑 → ((𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸) ∨ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)))
5938, 57, 58mpjaodan 956 1 (𝜑𝐶 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  ≤Gcleg 26376  pInvGcmir 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-mir 26447
This theorem is referenced by:  footexALT  26512  footexlem1  26513  mideulem2  26528
  Copyright terms: Public domain W3C validator