MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  krippen Structured version   Visualization version   GIF version

Theorem krippen 27052
Description: Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
krippen.m 𝑀 = (𝑆𝑋)
krippen.n 𝑁 = (𝑆𝑌)
krippen.a (𝜑𝐴𝑃)
krippen.b (𝜑𝐵𝑃)
krippen.c (𝜑𝐶𝑃)
krippen.e (𝜑𝐸𝑃)
krippen.f (𝜑𝐹𝑃)
krippen.x (𝜑𝑋𝑃)
krippen.y (𝜑𝑌𝑃)
krippen.1 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
krippen.2 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
krippen.3 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
krippen.4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
krippen.5 (𝜑𝐵 = (𝑀𝐴))
krippen.6 (𝜑𝐹 = (𝑁𝐸))
Assertion
Ref Expression
krippen (𝜑𝐶 ∈ (𝑋𝐼𝑌))

Proof of Theorem krippen
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐺 ∈ TarskiG)
8 krippen.m . . 3 𝑀 = (𝑆𝑋)
9 krippen.n . . 3 𝑁 = (𝑆𝑌)
10 krippen.a . . . 4 (𝜑𝐴𝑃)
1110adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐴𝑃)
12 krippen.b . . . 4 (𝜑𝐵𝑃)
1312adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵𝑃)
14 krippen.c . . . 4 (𝜑𝐶𝑃)
1514adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶𝑃)
16 krippen.e . . . 4 (𝜑𝐸𝑃)
1716adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐸𝑃)
18 krippen.f . . . 4 (𝜑𝐹𝑃)
1918adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹𝑃)
20 krippen.x . . . 4 (𝜑𝑋𝑃)
2120adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑋𝑃)
22 krippen.y . . . 4 (𝜑𝑌𝑃)
2322adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑌𝑃)
24 krippen.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
2524adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐴𝐼𝐸))
26 krippen.2 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
2726adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐵𝐼𝐹))
28 krippen.3 . . . 4 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
2928adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴) = (𝐶 𝐵))
30 krippen.4 . . . 4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
3130adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐸) = (𝐶 𝐹))
32 krippen.5 . . . 4 (𝜑𝐵 = (𝑀𝐴))
3332adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵 = (𝑀𝐴))
34 krippen.6 . . . 4 (𝜑𝐹 = (𝑁𝐸))
3534adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹 = (𝑁𝐸))
36 eqid 2738 . . 3 (≤G‘𝐺) = (≤G‘𝐺)
37 simpr 485 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸))
381, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37krippenlem 27051 . 2 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝑋𝐼𝑌))
396adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐺 ∈ TarskiG)
4022adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑌𝑃)
4114adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶𝑃)
4220adantr 481 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑋𝑃)
4316adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐸𝑃)
4418adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹𝑃)
4510adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐴𝑃)
4612adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵𝑃)
4724adantr 481 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐴𝐼𝐸))
481, 2, 3, 39, 45, 41, 43, 47tgbtwncom 26849 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐸𝐼𝐴))
4926adantr 481 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐵𝐼𝐹))
501, 2, 3, 39, 46, 41, 44, 49tgbtwncom 26849 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐹𝐼𝐵))
5130adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸) = (𝐶 𝐹))
5228adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐴) = (𝐶 𝐵))
5334adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹 = (𝑁𝐸))
5432adantr 481 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵 = (𝑀𝐴))
55 simpr 485 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴))
561, 2, 3, 4, 5, 39, 9, 8, 43, 44, 41, 45, 46, 40, 42, 48, 50, 51, 52, 53, 54, 36, 55krippenlem 27051 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑌𝐼𝑋))
571, 2, 3, 39, 40, 41, 42, 56tgbtwncom 26849 . 2 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑋𝐼𝑌))
581, 2, 3, 36, 6, 14, 10, 14, 16legtrid 26952 . 2 (𝜑 → ((𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸) ∨ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)))
5938, 57, 58mpjaodan 956 1 (𝜑𝐶 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  ≤Gcleg 26943  pInvGcmir 27013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-mir 27014
This theorem is referenced by:  footexALT  27079  footexlem1  27080  mideulem2  27095
  Copyright terms: Public domain W3C validator