MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  krippen Structured version   Visualization version   GIF version

Theorem krippen 28594
Description: Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
krippen.m 𝑀 = (𝑆𝑋)
krippen.n 𝑁 = (𝑆𝑌)
krippen.a (𝜑𝐴𝑃)
krippen.b (𝜑𝐵𝑃)
krippen.c (𝜑𝐶𝑃)
krippen.e (𝜑𝐸𝑃)
krippen.f (𝜑𝐹𝑃)
krippen.x (𝜑𝑋𝑃)
krippen.y (𝜑𝑌𝑃)
krippen.1 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
krippen.2 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
krippen.3 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
krippen.4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
krippen.5 (𝜑𝐵 = (𝑀𝐴))
krippen.6 (𝜑𝐹 = (𝑁𝐸))
Assertion
Ref Expression
krippen (𝜑𝐶 ∈ (𝑋𝐼𝑌))

Proof of Theorem krippen
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐺 ∈ TarskiG)
8 krippen.m . . 3 𝑀 = (𝑆𝑋)
9 krippen.n . . 3 𝑁 = (𝑆𝑌)
10 krippen.a . . . 4 (𝜑𝐴𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐴𝑃)
12 krippen.b . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵𝑃)
14 krippen.c . . . 4 (𝜑𝐶𝑃)
1514adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶𝑃)
16 krippen.e . . . 4 (𝜑𝐸𝑃)
1716adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐸𝑃)
18 krippen.f . . . 4 (𝜑𝐹𝑃)
1918adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹𝑃)
20 krippen.x . . . 4 (𝜑𝑋𝑃)
2120adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑋𝑃)
22 krippen.y . . . 4 (𝜑𝑌𝑃)
2322adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝑌𝑃)
24 krippen.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
2524adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐴𝐼𝐸))
26 krippen.2 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
2726adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝐵𝐼𝐹))
28 krippen.3 . . . 4 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
2928adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴) = (𝐶 𝐵))
30 krippen.4 . . . 4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
3130adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐸) = (𝐶 𝐹))
32 krippen.5 . . . 4 (𝜑𝐵 = (𝑀𝐴))
3332adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐵 = (𝑀𝐴))
34 krippen.6 . . . 4 (𝜑𝐹 = (𝑁𝐸))
3534adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐹 = (𝑁𝐸))
36 eqid 2729 . . 3 (≤G‘𝐺) = (≤G‘𝐺)
37 simpr 484 . . 3 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸))
381, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37krippenlem 28593 . 2 ((𝜑 ∧ (𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸)) → 𝐶 ∈ (𝑋𝐼𝑌))
396adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐺 ∈ TarskiG)
4022adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑌𝑃)
4114adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶𝑃)
4220adantr 480 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝑋𝑃)
4316adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐸𝑃)
4418adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹𝑃)
4510adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐴𝑃)
4612adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵𝑃)
4724adantr 480 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐴𝐼𝐸))
481, 2, 3, 39, 45, 41, 43, 47tgbtwncom 28391 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐸𝐼𝐴))
4926adantr 480 . . . . 5 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐵𝐼𝐹))
501, 2, 3, 39, 46, 41, 44, 49tgbtwncom 28391 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝐹𝐼𝐵))
5130adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸) = (𝐶 𝐹))
5228adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐴) = (𝐶 𝐵))
5334adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐹 = (𝑁𝐸))
5432adantr 480 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐵 = (𝑀𝐴))
55 simpr 484 . . . 4 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴))
561, 2, 3, 4, 5, 39, 9, 8, 43, 44, 41, 45, 46, 40, 42, 48, 50, 51, 52, 53, 54, 36, 55krippenlem 28593 . . 3 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑌𝐼𝑋))
571, 2, 3, 39, 40, 41, 42, 56tgbtwncom 28391 . 2 ((𝜑 ∧ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)) → 𝐶 ∈ (𝑋𝐼𝑌))
581, 2, 3, 36, 6, 14, 10, 14, 16legtrid 28494 . 2 (𝜑 → ((𝐶 𝐴)(≤G‘𝐺)(𝐶 𝐸) ∨ (𝐶 𝐸)(≤G‘𝐺)(𝐶 𝐴)))
5938, 57, 58mpjaodan 960 1 (𝜑𝐶 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  LineGclng 28337  ≤Gcleg 28485  pInvGcmir 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkg 28356  df-cgrg 28414  df-leg 28486  df-mir 28556
This theorem is referenced by:  footexALT  28621  footexlem1  28622  mideulem2  28637
  Copyright terms: Public domain W3C validator