List of Syntax, Axioms (ax-) and
Definitions (df-)| 
Ref | Expression (see link for any distinct variable requirements)
 | 
| wn 3 | wff
 ¬ φ | 
| wi 4 | wff
(φ → ψ) | 
| ax-mp 5 | ⊢ φ   
&   ⊢ (φ
→ ψ)   
⇒   ⊢ ψ | 
| ax-1 6 | ⊢ (φ
→ (ψ → φ)) | 
| ax-2 7 | ⊢ ((φ
→ (ψ → χ)) → ((φ → ψ) → (φ → χ))) | 
| ax-3 8 | ⊢ ((¬ φ → ¬ ψ) → (ψ → φ)) | 
| wb 176 | wff (φ ↔
ψ) | 
| df-bi 177 | ⊢  ¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) | 
| wo 357 | wff (φ  ∨ ψ) | 
| wa 358 | wff (φ ∧ ψ) | 
| df-or 359 | ⊢ ((φ
 ∨ ψ)
↔ (¬ φ → ψ)) | 
| df-an 360 | ⊢ ((φ
∧ ψ)
↔ ¬ (φ → ¬ ψ)) | 
| w3o 933 | wff (φ  ∨ ψ  ∨ χ) | 
| w3a 934 | wff (φ ∧ ψ ∧ χ) | 
| df-3or 935 | ⊢ ((φ
 ∨ ψ
 ∨ χ)
↔ ((φ 
∨ ψ) 
∨ χ)) | 
| df-3an 936 | ⊢ ((φ
∧ ψ
∧ χ)
↔ ((φ ∧ ψ) ∧ χ)) | 
| wnan 1287 | wff (φ ⊼ ψ) | 
| df-nan 1288 | ⊢ ((φ
⊼ ψ)
↔ ¬ (φ ∧ ψ)) | 
| wxo 1304 | wff (φ ⊻
ψ) | 
| df-xor 1305 | ⊢ ((φ
⊻ ψ) ↔ ¬ (φ ↔ ψ)) | 
| wtru 1316 | wff  ⊤ | 
| wfal 1317 | wff  ⊥ | 
| df-tru 1319 | ⊢ ( ⊤ ↔ (φ ↔ φ)) | 
| df-fal 1320 | ⊢ ( ⊥ ↔ ¬ ⊤
) | 
| whad 1378 | wff hadd(φ,
ψ, χ) | 
| wcad 1379 | wff cadd(φ,
ψ, χ) | 
| df-had 1380 | ⊢ (hadd(φ,
ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) | 
| df-cad 1381 | ⊢ (cadd(φ,
ψ, χ) ↔ ((φ ∧ ψ)  ∨ (χ ∧ (φ ⊻ ψ)))) | 
| ax-meredith 1406 | ⊢ (((((φ
→ ψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τ → φ) → (θ → φ))) | 
| wal 1540 | wff ∀xφ | 
| wex 1541 | wff ∃xφ | 
| df-ex 1542 | ⊢ (∃xφ ↔
¬ ∀x ¬ φ) | 
| wnf 1544 | wff Ⅎxφ | 
| df-nf 1545 | ⊢ (Ⅎxφ ↔
∀x(φ →
∀xφ)) | 
| ax-gen 1546 | ⊢ φ    ⇒   ⊢ ∀xφ | 
| ax-5 1557 | ⊢ (∀x(φ →
ψ) → (∀xφ → ∀xψ)) | 
| ax-17 1616 | ⊢ (φ
→ ∀xφ) | 
| cv 1641 | class x | 
| wceq 1642 | wff A = B | 
| wsb 1648 | wff [y / x]φ | 
| df-sb 1649 | ⊢ ([y /
x]φ
↔ ((x = y → φ)
∧ ∃x(x = y ∧ φ))) | 
| ax-9 1654 | ⊢  ¬ ∀x ¬
x = y | 
| ax-8 1675 | ⊢ (x =
y → (x = z →
y = z)) | 
| wcel 1710 | wff A ∈ B | 
| ax-13 1712 | ⊢ (x =
y → (x ∈ z → y ∈ z)) | 
| ax-14 1714 | ⊢ (x =
y → (z ∈ x → z ∈ y)) | 
| ax-6 1729 | ⊢ (¬ ∀xφ → ∀x ¬
∀xφ) | 
| ax-7 1734 | ⊢ (∀x∀yφ →
∀y∀xφ) | 
| ax-11 1746 | ⊢ (x =
y → (∀yφ → ∀x(x = y →
φ))) | 
| ax-12 1925 | ⊢ (¬ x =
y → (y = z →
∀x
y = z)) | 
| ax-4 2135 | ⊢ (∀xφ →
φ) | 
| ax-5o 2136 | ⊢ (∀x(∀xφ →
ψ) → (∀xφ → ∀xψ)) | 
| ax-6o 2137 | ⊢ (¬ ∀x ¬
∀xφ → φ) | 
| ax-9o 2138 | ⊢ (∀x(x = y → ∀xφ) → φ) | 
| ax-10o 2139 | ⊢ (∀x x = y → (∀xφ → ∀yφ)) | 
| ax-10 2140 | ⊢ (∀x x = y → ∀y y = x) | 
| ax-11o 2141 | ⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) | 
| ax-12o 2142 | ⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) | 
| ax-15 2143 | ⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x
∈ y
→ ∀z x ∈ y))) | 
| ax-16 2144 | ⊢ (∀x x = y → (φ
→ ∀xφ)) | 
| weu 2204 | wff ∃!xφ | 
| wmo 2205 | wff ∃*xφ | 
| df-eu 2208 | ⊢ (∃!xφ ↔
∃y∀x(φ ↔ x = y)) | 
| df-mo 2209 | ⊢ (∃*xφ ↔
(∃xφ → ∃!xφ)) | 
| ax-7d 2295 | ⊢ (∀x∀yφ →
∀y∀xφ) | 
| ax-8d 2296 | ⊢ (x =
y → (x = z →
y = z)) | 
| ax-9d1 2297 | ⊢  ¬ ∀x ¬
x = x | 
| ax-9d2 2298 | ⊢  ¬ ∀x ¬
x = y | 
| ax-10d 2299 | ⊢ (∀x x = y → ∀y y = x) | 
| ax-11d 2300 | ⊢ (x =
y → (∀yφ → ∀x(x = y →
φ))) | 
| ax-ext 2334 | ⊢ (∀z(z ∈ x ↔
z ∈
y) → x = y) | 
| cab 2339 | class {x ∣ φ} | 
| df-clab 2340 | ⊢ (x ∈ {y ∣ φ}
↔ [x / y]φ) | 
| df-cleq 2346 | ⊢ (∀x(x ∈ y ↔
x ∈
z) → y = z)    ⇒   ⊢ (A =
B ↔ ∀x(x ∈ A ↔ x ∈ B)) | 
| df-clel 2349 | ⊢ (A ∈ B ↔
∃x(x = A ∧ x ∈ B)) | 
| wnfc 2477 | wff ℲxA | 
| df-nfc 2479 | ⊢ (ℲxA ↔ ∀yℲx
y ∈
A) | 
| wne 2517 | wff A ≠ B | 
| wnel 2518 | wff A ∉ B | 
| df-ne 2519 | ⊢ (A ≠
B ↔ ¬ A = B) | 
| df-nel 2520 | ⊢ (A ∉ B ↔
¬ A ∈
B) | 
| wral 2615 | wff ∀x ∈ A φ | 
| wrex 2616 | wff ∃x ∈ A φ | 
| wreu 2617 | wff ∃!x ∈ A φ | 
| wrmo 2618 | wff ∃*x ∈ A φ | 
| crab 2619 | class {x ∈ A ∣ φ} | 
| df-ral 2620 | ⊢ (∀x ∈ A φ ↔
∀x(x ∈ A →
φ)) | 
| df-rex 2621 | ⊢ (∃x ∈ A φ ↔
∃x(x ∈ A ∧ φ)) | 
| df-reu 2622 | ⊢ (∃!x ∈ A φ ↔
∃!x(x ∈ A ∧ φ)) | 
| df-rmo 2623 | ⊢ (∃*x ∈ A φ ↔
∃*x(x ∈ A ∧ φ)) | 
| df-rab 2624 | ⊢ {x ∈ A ∣ φ} =
{x ∣
(x ∈
A ∧ φ)} | 
| cvv 2860 | class V | 
| df-v 2862 | ⊢ V = {x ∣ x = x} | 
| wsbc 3047 | wff [̣A /
x]̣φ | 
| df-sbc 3048 | ⊢ ([̣A /
x]̣φ ↔ A ∈ {x ∣ φ}) | 
| csb 3137 | class [A /
x]B | 
| df-csb 3138 | ⊢ [A /
x]B = {y ∣ [̣A /
x]̣y ∈ B} | 
| cnin 3205 | class (A ⩃
B) | 
| ccompl 3206 | class
 ∼ A | 
| cdif 3207 | class (A ∖ B) | 
| cun 3208 | class (A ∪
B) | 
| cin 3209 | class (A ∩
B) | 
| csymdif 3210 | class
(A ⊕ B) | 
| df-nin 3212 | ⊢ (A ⩃
B) = {x
∣ (x
∈ A ⊼ x ∈ B)} | 
| df-compl 3213 | ⊢  ∼ A =
(A ⩃ A) | 
| df-in 3214 | ⊢ (A ∩
B) = ∼ (A ⩃ B) | 
| df-un 3215 | ⊢ (A ∪
B) = ( ∼ A ⩃ ∼ B) | 
| df-dif 3216 | ⊢ (A ∖ B) =
(A ∩ ∼ B) | 
| df-symdif 3217 | ⊢ (A ⊕
B) = ((A ∖ B) ∪ (B
∖ A)) | 
| wss 3258 | wff A ⊆ B | 
| wpss 3259 | wff A ⊊
B | 
| df-ss 3260 | ⊢ (A ⊆ B ↔
(A ∩ B) = A) | 
| df-pss 3262 | ⊢ (A ⊊
B ↔ (A ⊆ B ∧ A ≠ B)) | 
| c0 3551 | class ∅ | 
| df-nul 3552 | ⊢ ∅ = (V ∖ V) | 
| cif 3663 | class  if(φ,
A, B) | 
| df-if 3664 | ⊢  if(φ,
A, B) =
{x ∣
((x ∈
A ∧ φ)  ∨
(x ∈
B ∧ ¬
φ))} | 
| cpw 3723 | class ℘A | 
| df-pw 3725 | ⊢ ℘A = {x ∣ x ⊆ A} | 
| csn 3738 | class {A} | 
| cpr 3739 | class {A, B} | 
| ctp 3740 | class {A, B, C} | 
| df-sn 3742 | ⊢ {A} =
{x ∣
x = A} | 
| df-pr 3743 | ⊢ {A, B} = ({A} ∪
{B}) | 
| df-tp 3744 | ⊢ {A, B, C} =
({A, B}
∪ {C}) | 
| cuni 3892 | class ∪A | 
| df-uni 3893 | ⊢ ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} | 
| cint 3927 | class ∩A | 
| df-int 3928 | ⊢ ∩A = {x ∣ ∀y(y ∈ A →
x ∈
y)} | 
| ciun 3970 | class ∪x ∈ A B | 
| ciin 3971 | class ∩x ∈ A B | 
| df-iun 3972 | ⊢ ∪x ∈ A B = {y ∣ ∃x ∈ A y ∈ B} | 
| df-iin 3973 | ⊢ ∩x ∈ A B = {y ∣ ∀x ∈ A y ∈ B} | 
| copk 4058 | class ⟪A,
B⟫ | 
| df-opk 4059 | ⊢ ⟪A,
B⟫ = {{A}, {A, B}} | 
| ax-nin 4079 | ⊢ ∃z∀w(w ∈ z ↔
(w ∈
x ⊼
w ∈
y)) | 
| ax-xp 4080 | ⊢ ∃y∀z(z ∈ y ↔
∃w∃t(z = ⟪w,
t⟫ ∧ t ∈ x)) | 
| ax-cnv 4081 | ⊢ ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) | 
| ax-1c 4082 | ⊢ ∃x∀y(y ∈ x ↔
∃z∀w(w ∈ y ↔ w =
z)) | 
| ax-sset 4083 | ⊢ ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) | 
| ax-si 4084 | ⊢ ∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) | 
| ax-ins2 4085 | ⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| ax-ins3 4086 | ⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) | 
| ax-typlower 4087 | ⊢ ∃y∀z(z ∈ y ↔
∀w⟪w,
{z}⟫ ∈ x) | 
| ax-sn 4088 | ⊢ ∃y∀z(z ∈ y ↔
z = x) | 
| cuni1 4134 | class ⋃1A | 
| c1c 4135 | class 1c | 
| cpw1 4136 | class ℘1A | 
| df-1c 4137 | ⊢ 1c = {x ∣ ∃y x = {y}} | 
| df-pw1 4138 | ⊢ ℘1A = (℘A ∩ 1c) | 
| df-uni1 4139 | ⊢ ⋃1A = ∪(A ∩ 1c) | 
| cxpk 4175 | class (A
×k B) | 
| ccnvk 4176 | class ◡kA | 
| cins2k 4177 | class
 Ins2k A | 
| cins3k 4178 | class
 Ins3k A | 
| cp6 4179 | class  P6 A | 
| cimak 4180 | class (A
“k B) | 
| ccomk 4181 | class (A ∘k B) | 
| csik 4182 | class  SIk A | 
| cimagek 4183 | class
ImagekA | 
| cssetk 4184 | class
 Sk | 
| cidk 4185 | class  Ik | 
| df-xpk 4186 | ⊢ (A
×k B) = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B))} | 
| df-cnvk 4187 | ⊢ ◡kA = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧
⟪z, y⟫ ∈
A)} | 
| df-ins2k 4188 | ⊢  Ins2k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, v⟫ ∈
A))} | 
| df-ins3k 4189 | ⊢  Ins3k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A))} | 
| df-imak 4190 | ⊢ (A
“k B) = {x ∣ ∃y ∈ B
⟪y, x⟫ ∈
A} | 
| df-cok 4191 | ⊢ (A ∘k B) = (( Ins2k A ∩ Ins3k ◡kB) “k V) | 
| df-p6 4192 | ⊢  P6 A = {x ∣ (V ×k {{x}}) ⊆ A} | 
| df-sik 4193 | ⊢  SIk A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A))} | 
| df-ssetk 4194 | ⊢  Sk = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y ⊆ z)} | 
| df-imagek 4195 | ⊢ ImagekA = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) | 
| df-idk 4196 | ⊢  Ik = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y = z)} | 
| cio 4338 | class (℩xφ) | 
| df-iota 4340 | ⊢ (℩xφ) = ∪{y ∣ {x ∣ φ} =
{y}} | 
| cnnc 4374 | class  Nn | 
| c0c 4375 | class 0c | 
| cplc 4376 | class (A
+c B) | 
| cfin 4377 | class  Fin | 
| df-0c 4378 | ⊢ 0c = {∅} | 
| df-addc 4379 | ⊢ (A
+c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} | 
| df-nnc 4380 | ⊢  Nn = ∩{b ∣ (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b)} | 
| df-fin 4381 | ⊢  Fin = ∪ Nn | 
| clefin 4433 | class
 ≤fin | 
| cltfin 4434 | class
 <fin | 
| cncfin 4435 | class
 Ncfin A | 
| ctfin 4436 | class  Tfin
A | 
| cevenfin 4437 | class
 Evenfin | 
| coddfin 4438 | class
 Oddfin | 
| wsfin 4439 | wff  Sfin
(A, B) | 
| cspfin 4440 | class
 Spfin | 
| df-lefin 4441 | ⊢  ≤fin = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} | 
| df-ltfin 4442 | ⊢  <fin = {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} | 
| df-ncfin 4443 | ⊢  Ncfin
A = (℩x(x ∈ Nn ∧ A ∈ x)) | 
| df-tfin 4444 | ⊢  Tfin
M = if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | 
| df-evenfin 4445 | ⊢  Evenfin
= {x ∣
(∃n
∈ Nn x = (n
+c n) ∧ x ≠ ∅)} | 
| df-oddfin 4446 | ⊢  Oddfin
= {x ∣
(∃n
∈ Nn x = ((n
+c n)
+c 1c) ∧
x ≠ ∅)} | 
| df-sfin 4447 | ⊢ ( Sfin
(M, N)
↔ (M ∈ Nn ∧ N ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ N))) | 
| df-spfin 4448 | ⊢  Spfin =
∩{a ∣ ( Ncfin
V ∈ a
∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} | 
| cop 4562 | class 〈A, B〉 | 
| cphi 4563 | class  Phi A | 
| cproj1 4564 | class
 Proj1 A | 
| cproj2 4565 | class
 Proj2 A | 
| df-phi 4566 | ⊢  Phi A = {y ∣ ∃x ∈ A y =
if(x ∈
Nn , (x
+c 1c), x)} | 
| df-op 4567 | ⊢ 〈A, B〉 = ({x ∣ ∃y ∈ A x =  Phi y} ∪
{x ∣
∃y ∈ B x = ( Phi y ∪ {0c})}) | 
| df-proj1 4568 | ⊢  Proj1 A = {x ∣  Phi x ∈ A} | 
| df-proj2 4569 | ⊢  Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} | 
| copab 4623 | class {〈x, y〉 ∣ φ} | 
| df-opab 4624 | ⊢ {〈x, y〉 ∣ φ} = {z
∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} | 
| wbr 4640 | wff ARB | 
| df-br 4641 | ⊢ (ARB ↔ 〈A, B〉 ∈ R) | 
| c1st 4718 | class 1st | 
| cswap 4719 | class  Swap
 | 
| csset 4720 | class  S  | 
| csi 4721 | class  SI A | 
| ccom 4722 | class (A ∘ B) | 
| cima 4723 | class (A “
B) | 
| df-1st 4724 | ⊢ 1st = {〈x, y〉 ∣ ∃z x = 〈y, z〉} | 
| df-swap 4725 | ⊢  Swap  = {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} | 
| df-sset 4726 | ⊢  S  = {〈x, y〉 ∣ x ⊆ y} | 
| df-co 4727 | ⊢ (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} | 
| df-ima 4728 | ⊢ (A “
B) = {x
∣ ∃y ∈ B yAx} | 
| df-si 4729 | ⊢  SI A = {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} | 
| cep 4763 | class  E | 
| cid 4764 | class  I | 
| df-eprel 4765 | ⊢  E = {〈x, y〉 ∣ x ∈ y} | 
| df-id 4768 | ⊢  I = {〈x, y〉 ∣ x = y} | 
| cxp 4771 | class (A ×
B) | 
| ccnv 4772 | class ◡A | 
| cdm 4773 | class dom A | 
| crn 4774 | class ran A | 
| cres 4775 | class (A ↾ B) | 
| wfun 4776 | wff Fun A | 
| wfn 4777 | wff A Fn B | 
| wf 4778 | wff F:A–→B | 
| wf1 4779 | wff F:A–1-1→B | 
| wfo 4780 | wff F:A–onto→B | 
| wf1o 4781 | wff F:A–1-1-onto→B | 
| cfv 4782 | class (F
‘A) | 
| wiso 4783 | wff H Isom R, S (A, B) | 
| c2nd 4784 | class 2nd | 
| df-xp 4785 | ⊢ (A ×
B) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} | 
| df-cnv 4786 | ⊢ ◡A =
{〈x,
y〉 ∣ yAx} | 
| df-rn 4787 | ⊢ ran A =
(A “ V) | 
| df-dm 4788 | ⊢ dom A = ran
◡A | 
| df-res 4789 | ⊢ (A ↾ B) =
(A ∩ (B × V)) | 
| df-fun 4790 | ⊢ (Fun A
↔ (A ∘ ◡A) ⊆ I ) | 
| df-fn 4791 | ⊢ (A Fn
B ↔ (Fun A ∧ dom A = B)) | 
| df-f 4792 | ⊢ (F:A–→B
↔ (F Fn A ∧ ran F ⊆ B)) | 
| df-f1 4793 | ⊢ (F:A–1-1→B ↔
(F:A–→B
∧ Fun ◡F)) | 
| df-fo 4794 | ⊢ (F:A–onto→B ↔
(F Fn A
∧ ran F =
B)) | 
| df-f1o 4795 | ⊢ (F:A–1-1-onto→B ↔
(F:A–1-1→B ∧ F:A–onto→B)) | 
| df-fv 4796 | ⊢ (F
‘A) = (℩xAFx) | 
| df-iso 4797 | ⊢ (H Isom
R, S
(A, B)
↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) | 
| df-2nd 4798 | ⊢ 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} | 
| co 5526 | class (AFB) | 
| df-ov 5527 | ⊢ (AFB) = (F ‘〈A, B〉) | 
| coprab 5528 | class
{〈〈x, y〉, z〉 ∣ φ} | 
| df-oprab 5529 | ⊢ {〈〈x, y〉, z〉 ∣ φ} =
{w ∣
∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ φ)} | 
| cmpt 5652 | class (x ∈ A ↦ B) | 
| df-mpt 5653 | ⊢ (x ∈ A ↦ B) = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} | 
| cmpt2 5654 | class (x ∈ A, y ∈ B ↦ C) | 
| df-mpt2 5655 | ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} | 
| ctxp 5736 | class (A ⊗
B) | 
| df-txp 5737 | ⊢ (A ⊗
B) = ((◡1st ∘ A) ∩
(◡2nd ∘ B)) | 
| cpprod 5738 | class
 PProd (A, B) | 
| df-pprod 5739 | ⊢  PProd (A, B) =
((A ∘
1st ) ⊗ (B ∘ 2nd )) | 
| cfix 5740 | class  Fix A | 
| df-fix 5741 | ⊢  Fix A = ran (A ∩
I ) | 
| ccup 5742 | class  Cup | 
| df-cup 5743 | ⊢  Cup = (x ∈ V, y ∈ V ↦ (x ∪
y)) | 
| cdisj 5744 | class  Disj | 
| df-disj 5745 | ⊢  Disj = {〈x, y〉 ∣ (x ∩
y) = ∅} | 
| caddcfn 5746 | class
 AddC | 
| df-addcfn 5747 | ⊢  AddC = (x ∈ V, y ∈ V ↦ (x
+c y)) | 
| ccompose 5748 | class
 Compose | 
| df-compose 5749 | ⊢  Compose =
(x ∈ V,
y ∈ V
↦ (x
∘ y)) | 
| cins2 5750 | class  Ins2 A | 
| df-ins2 5751 | ⊢  Ins2 A = (V ⊗ A) | 
| cins3 5752 | class  Ins3 A | 
| df-ins3 5753 | ⊢  Ins3 A = (A ⊗
V) | 
| cimage 5754 | class
ImageA | 
| df-image 5755 | ⊢ ImageA =
∼ (( Ins2  S 
⊕ Ins3 ( S 
∘ ◡ SI A)) “ 1c) | 
| cins4 5756 | class  Ins4 A | 
| df-ins4 5757 | ⊢  Ins4 A = (◡(1st ⊗ ((1st
∘ 2nd ) ⊗ ((1st
∘ 2nd ) ∘ 2nd ))) “ A) | 
| csi3 5758 | class  SI3 A | 
| df-si3 5759 | ⊢  SI3 A = (( SI
1st ⊗ ( SI
(1st ∘ 2nd )
⊗  SI (2nd ∘ 2nd ))) “ ℘1A) | 
| cfuns 5760 | class  Funs | 
| df-funs 5761 | ⊢  Funs = {f ∣ Fun f} | 
| cfns 5762 | class  Fns | 
| df-fns 5763 | ⊢  Fns = {〈f, a〉 ∣ f Fn
a} | 
| ccross 5764 | class
 Cross | 
| df-cross 5765 | ⊢  Cross = (x ∈ V, y ∈ V ↦ (x ×
y)) | 
| cpw1fn 5766 | class
 Pw1Fn | 
| df-pw1fn 5767 | ⊢  Pw1Fn = (x ∈
1c ↦ ℘1∪x) | 
| cfullfun 5768 | class
 FullFun F | 
| df-fullfun 5769 | ⊢  FullFun F = ((( I ∘
F) ∖ (
∼ I ∘ F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) | 
| cdomfn 5770 | class
 Dom | 
| df-domfn 5771 | ⊢  Dom = (x ∈ V ↦ dom x) | 
| cranfn 5772 | class
 Ran | 
| df-ranfn 5773 | ⊢  Ran = (x ∈ V ↦ ran x) | 
| cclos1 5873 | class
 Clos1 (A, R) | 
| df-clos1 5874 | ⊢  Clos1 (S, R) = ∩{a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} | 
| ctrans 5889 | class
 Trans | 
| cref 5890 | class  Ref | 
| cantisym 5891 | class
 Antisym | 
| cpartial 5892 | class
 Po | 
| cconnex 5893 | class
 Connex | 
| cstrict 5894 | class
 Or | 
| cfound 5895 | class
 Fr | 
| cwe 5896 | class  We | 
| cext 5897 | class  Ext | 
| csym 5898 | class  Sym | 
| cer 5899 | class  Er | 
| df-trans 5900 | ⊢  Trans = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) →
xrz)} | 
| df-ref 5901 | ⊢  Ref = {〈r, a〉 ∣ ∀x ∈ a xrx} | 
| df-antisym 5902 | ⊢  Antisym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) →
x = y)} | 
| df-partial 5903 | ⊢  Po = (( Ref ∩ Trans ) ∩
Antisym ) | 
| df-connex 5904 | ⊢  Connex = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry  ∨ yrx)} | 
| df-strict 5905 | ⊢  Or = ( Po ∩ Connex
) | 
| df-found 5906 | ⊢  Fr = {〈r, a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} | 
| df-we 5907 | ⊢  We = ( Or ∩ Fr
) | 
| df-ext 5908 | ⊢  Ext = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔
zry) →
x = y)} | 
| df-sym 5909 | ⊢  Sym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry →
yrx)} | 
| df-er 5910 | ⊢  Er = ( Sym ∩ Trans
) | 
| cec 5946 | class [A]R | 
| cqs 5947 | class (A /
R) | 
| df-ec 5948 | ⊢ [A]R = (R “
{A}) | 
| df-qs 5952 | ⊢ (A /
R) = {y
∣ ∃x ∈ A y = [x]R} | 
| cmap 6000 | class  ↑m | 
| cpm 6001 | class  ↑pm | 
| df-map 6002 | ⊢  ↑m = (x ∈ V, y ∈ V ↦ {f ∣ f:y–→x}) | 
| df-pm 6003 | ⊢  ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x)
∣ Fun f}) | 
| cen 6029 | class  ≈ | 
| df-en 6030 | ⊢  ≈ = {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} | 
| cncs 6089 | class  NC | 
| clec 6090 | class  ≤c | 
| cltc 6091 | class  <c | 
| cnc 6092 | class  Nc A | 
| cmuc 6093 | class  ·c | 
| ctc 6094 | class  Tc
A | 
| c2c 6095 | class 2c | 
| c3c 6096 | class 3c | 
| cce 6097 | class  ↑c | 
| ctcfn 6098 | class TcFn | 
| df-ncs 6099 | ⊢  NC = (V /
≈ ) | 
| df-lec 6100 | ⊢  ≤c = {〈a, b〉 ∣ ∃x ∈ a ∃y ∈ b x ⊆ y} | 
| df-ltc 6101 | ⊢  <c = ( ≤c ∖ I ) | 
| df-nc 6102 | ⊢  Nc A = [A]
≈ | 
| df-muc 6103 | ⊢  ·c = (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃g ∈ n a ≈
(b × g)}) | 
| df-tc 6104 | ⊢  Tc
A = (℩b(b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x)) | 
| df-2c 6105 | ⊢ 2c = Nc {∅,
V} | 
| df-3c 6106 | ⊢ 3c = Nc {∅, V, (V ∖ {∅})} | 
| df-ce 6107 | ⊢  ↑c = (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) | 
| df-tcfn 6108 | ⊢ TcFn = (x
∈ 1c ↦ Tc ∪x) | 
| cspac 6274 | class  Spac | 
| df-spac 6275 | ⊢  Spac =
(m ∈
NC ↦  Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) | 
| cfrec 6310 | class  FRec (F, I) | 
| df-frec 6311 | ⊢  FRec (F, I) =  Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
F)) | 
| ccan 6324 | class  Can | 
| df-can 6325 | ⊢  Can = {x ∣ ℘1x ≈ x} | 
| cscan 6326 | class  SCan | 
| df-scan 6327 | ⊢  SCan = {x ∣ (y ∈ x ↦ {y}) ∈
V} |