NFE Home New Foundations Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ φ
wi 4wff (φψ)
ax-mp 5φ    &   (φψ)       ψ
ax-1 6(φ → (ψφ))
ax-2 7((φ → (ψχ)) → ((φψ) → (φχ)))
ax-3 8((¬ φ → ¬ ψ) → (ψφ))
wb 176wff (φψ)
df-bi 177 ¬ (((φψ) → ¬ ((φψ) → ¬ (ψφ))) → ¬ (¬ ((φψ) → ¬ (ψφ)) → (φψ)))
wo 357wff (φ ψ)
wa 358wff (φ ψ)
df-or 359((φ ψ) ↔ (¬ φψ))
df-an 360((φ ψ) ↔ ¬ (φ → ¬ ψ))
w3o 933wff (φ ψ χ)
w3a 934wff (φ ψ χ)
df-3or 935((φ ψ χ) ↔ ((φ ψ) χ))
df-3an 936((φ ψ χ) ↔ ((φ ψ) χ))
wnan 1287wff (φ ψ)
df-nan 1288((φ ψ) ↔ ¬ (φ ψ))
wxo 1304wff (φψ)
df-xor 1305((φψ) ↔ ¬ (φψ))
wtru 1316wff
wfal 1317wff
df-tru 1319( ⊤ ↔ (φφ))
df-fal 1320( ⊥ ↔ ¬ ⊤ )
whad 1378wff hadd(φ, ψ, χ)
wcad 1379wff cadd(φ, ψ, χ)
df-had 1380(hadd(φ, ψ, χ) ↔ ((φψ) ⊻ χ))
df-cad 1381(cadd(φ, ψ, χ) ↔ ((φ ψ) (χ (φψ))))
ax-meredith 1406(((((φψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τφ) → (θφ)))
wal 1540wff xφ
wex 1541wff xφ
df-ex 1542(xφ ↔ ¬ x ¬ φ)
wnf 1544wff xφ
df-nf 1545(Ⅎxφx(φxφ))
ax-gen 1546φ       xφ
ax-5 1557(x(φψ) → (xφxψ))
ax-17 1616(φxφ)
cv 1641class x
wceq 1642wff A = B
wsb 1648wff [y / x]φ
df-sb 1649([y / x]φ ↔ ((x = yφ) x(x = y φ)))
ax-9 1654 ¬ x ¬ x = y
ax-8 1675(x = y → (x = zy = z))
wcel 1710wff A B
ax-13 1712(x = y → (x zy z))
ax-14 1714(x = y → (z xz y))
ax-6 1729xφx ¬ xφ)
ax-7 1734(xyφyxφ)
ax-11 1746(x = y → (yφx(x = yφ)))
ax-12 1925x = y → (y = zx y = z))
ax-4 2135(xφφ)
ax-5o 2136(x(xφψ) → (xφxψ))
ax-6o 2137x ¬ xφφ)
ax-9o 2138(x(x = yxφ) → φ)
ax-10o 2139(x x = y → (xφyφ))
ax-10 2140(x x = yy y = x)
ax-11o 2141x x = y → (x = y → (φx(x = yφ))))
ax-12o 2142z z = x → (¬ z z = y → (x = yz x = y)))
ax-15 2143z z = x → (¬ z z = y → (x yz x y)))
ax-16 2144(x x = y → (φxφ))
weu 2204wff ∃!xφ
wmo 2205wff ∃*xφ
df-eu 2208(∃!xφyx(φx = y))
df-mo 2209(∃*xφ ↔ (xφ∃!xφ))
ax-7d 2295(xyφyxφ)
ax-8d 2296(x = y → (x = zy = z))
ax-9d1 2297 ¬ x ¬ x = x
ax-9d2 2298 ¬ x ¬ x = y
ax-10d 2299(x x = yy y = x)
ax-11d 2300(x = y → (yφx(x = yφ)))
ax-ext 2334(z(z xz y) → x = y)
cab 2339class {x φ}
df-clab 2340(x {y φ} ↔ [x / y]φ)
df-cleq 2346(x(x yx z) → y = z)       (A = Bx(x Ax B))
df-clel 2349(A Bx(x = A x B))
wnfc 2477wff xA
df-nfc 2479(xAyx y A)
wne 2517wff AB
wnel 2518wff A B
df-ne 2519(AB ↔ ¬ A = B)
df-nel 2520(A B ↔ ¬ A B)
wral 2615wff x A φ
wrex 2616wff x A φ
wreu 2617wff ∃!x A φ
wrmo 2618wff ∃*x A φ
crab 2619class {x A φ}
df-ral 2620(x A φx(x Aφ))
df-rex 2621(x A φx(x A φ))
df-reu 2622(∃!x A φ∃!x(x A φ))
df-rmo 2623(∃*x A φ∃*x(x A φ))
df-rab 2624{x A φ} = {x (x A φ)}
cvv 2860class V
df-v 2862V = {x x = x}
wsbc 3047wff A / xφ
df-sbc 3048([̣A / xφA {x φ})
csb 3137class [A / x]B
df-csb 3138[A / x]B = {y A / xy B}
cnin 3205class (AB)
ccompl 3206class A
cdif 3207class (A B)
cun 3208class (AB)
cin 3209class (AB)
csymdif 3210class (AB)
df-nin 3212(AB) = {x (x A x B)}
df-compl 3213A = (AA)
df-in 3214(AB) = ∼ (AB)
df-un 3215(AB) = ( ∼ A ⩃ ∼ B)
df-dif 3216(A B) = (A ∩ ∼ B)
df-symdif 3217(AB) = ((A B) ∪ (B A))
wss 3258wff A B
wpss 3259wff AB
df-ss 3260(A B ↔ (AB) = A)
df-pss 3262(AB ↔ (A B AB))
c0 3551class
df-nul 3552 = (V V)
cif 3663class if(φ, A, B)
df-if 3664 if(φ, A, B) = {x ((x A φ) (x B ¬ φ))}
cpw 3723class A
df-pw 3725A = {x x A}
csn 3738class {A}
cpr 3739class {A, B}
ctp 3740class {A, B, C}
df-sn 3742{A} = {x x = A}
df-pr 3743{A, B} = ({A} ∪ {B})
df-tp 3744{A, B, C} = ({A, B} ∪ {C})
cuni 3892class A
df-uni 3893A = {x y(x y y A)}
cint 3927class A
df-int 3928A = {x y(y Ax y)}
ciun 3970class x A B
ciin 3971class x A B
df-iun 3972x A B = {y x A y B}
df-iin 3973x A B = {y x A y B}
copk 4058class A, B
df-opk 4059A, B⟫ = {{A}, {A, B}}
ax-nin 4079zw(w z ↔ (w x w y))
ax-xp 4080yz(z ywt(z = ⟪w, t t x))
ax-cnv 4081yzw(⟪z, w y ↔ ⟪w, z x)
ax-1c 4082xy(y xzw(w yw = z))
ax-sset 4083xyz(⟪y, z xw(w yw z))
ax-si 4084yzw(⟪{z}, {w}⟫ y ↔ ⟪z, w x)
ax-ins2 4085yzwt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, t x)
ax-ins3 4086yzwt(⟪{{z}}, ⟪w, t⟫⟫ y ↔ ⟪z, w x)
ax-typlower 4087yz(z yww, {z}⟫ x)
ax-sn 4088yz(z yz = x)
cuni1 4134class 1A
c1c 4135class 1c
cpw1 4136class 1A
df-1c 41371c = {x y x = {y}}
df-pw1 41381A = (A ∩ 1c)
df-uni1 41391A = (A ∩ 1c)
cxpk 4175class (A ×k B)
ccnvk 4176class kA
cins2k 4177class Ins2k A
cins3k 4178class Ins3k A
cp6 4179class P6 A
cimak 4180class (Ak B)
ccomk 4181class (A k B)
csik 4182class SIk A
cimagek 4183class ImagekA
cssetk 4184class Sk
cidk 4185class Ik
df-xpk 4186(A ×k B) = {x yz(x = ⟪y, z (y A z B))}
df-cnvk 4187kA = {x yz(x = ⟪y, zz, y A)}
df-ins2k 4188 Ins2k A = {x yz(x = ⟪y, z tuv(y = {{t}} z = ⟪u, vt, v A))}
df-ins3k 4189 Ins3k A = {x yz(x = ⟪y, z tuv(y = {{t}} z = ⟪u, vt, u A))}
df-imak 4190(Ak B) = {x y By, x A}
df-cok 4191(A k B) = (( Ins2k AIns3k kB) “k V)
df-p6 4192 P6 A = {x (V ×k {{x}}) A}
df-sik 4193 SIk A = {x yz(x = ⟪y, z tu(y = {t} z = {u} t, u A))}
df-ssetk 4194 Sk = {x yz(x = ⟪y, z y z)}
df-imagek 4195ImagekA = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c))
df-idk 4196 Ik = {x yz(x = ⟪y, z y = z)}
cio 4338class (℩xφ)
df-iota 4340(℩xφ) = {y {x φ} = {y}}
cnnc 4374class Nn
c0c 4375class 0c
cplc 4376class (A +c B)
cfin 4377class Fin
df-0c 43780c = {}
df-addc 4379(A +c B) = {x y A z B ((yz) = x = (yz))}
df-nnc 4380 Nn = {b (0c b y b (y +c 1c) b)}
df-fin 4381 Fin = Nn
clefin 4433class fin
cltfin 4434class <fin
cncfin 4435class Ncfin A
ctfin 4436class Tfin A
cevenfin 4437class Evenfin
coddfin 4438class Oddfin
wsfin 4439wff Sfin (A, B)
cspfin 4440class Spfin
df-lefin 4441fin = {x yz(x = ⟪y, z w Nn z = (y +c w))}
df-ltfin 4442 <fin = {x mn(x = ⟪m, n (m p Nn n = ((m +c p) +c 1c)))}
df-ncfin 4443 Ncfin A = (℩x(x Nn A x))
df-tfin 4444 Tfin M = if(M = , , (℩n(n Nn a M 1a n)))
df-evenfin 4445 Evenfin = {x (n Nn x = (n +c n) x)}
df-oddfin 4446 Oddfin = {x (n Nn x = ((n +c n) +c 1c) x)}
df-sfin 4447( Sfin (M, N) ↔ (M Nn N Nn a(1a M a N)))
df-spfin 4448 Spfin = {a ( Ncfin V a x a z( Sfin (z, x) → z a))}
cop 4562class A, B
cphi 4563class Phi A
cproj1 4564class Proj1 A
cproj2 4565class Proj2 A
df-phi 4566 Phi A = {y x A y = if(x Nn , (x +c 1c), x)}
df-op 4567A, B = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
df-proj1 4568 Proj1 A = {x Phi x A}
df-proj2 4569 Proj2 A = {x ( Phi x ∪ {0c}) A}
copab 4623class {x, y φ}
df-opab 4624{x, y φ} = {z xy(z = x, y φ)}
wbr 4640wff ARB
df-br 4641(ARBA, B R)
c1st 4718class 1st
cswap 4719class Swap
csset 4720class S
csi 4721class SI A
ccom 4722class (A B)
cima 4723class (AB)
df-1st 47241st = {x, y z x = y, z}
df-swap 4725 Swap = {x, y zw(x = z, w y = w, z)}
df-sset 4726 S = {x, y x y}
df-co 4727(A B) = {x, y z(xBz zAy)}
df-ima 4728(AB) = {x y B yAx}
df-si 4729 SI A = {x, y zw(x = {z} y = {w} zAw)}
cep 4763class E
cid 4764class I
df-eprel 4765 E = {x, y x y}
df-id 4768 I = {x, y x = y}
cxp 4771class (A × B)
ccnv 4772class A
cdm 4773class dom A
crn 4774class ran A
cres 4775class (A B)
wfun 4776wff Fun A
wfn 4777wff A Fn B
wf 4778wff F:A–→B
wf1 4779wff F:A1-1B
wfo 4780wff F:AontoB
wf1o 4781wff F:A1-1-ontoB
cfv 4782class (FA)
wiso 4783wff H Isom R, S (A, B)
c2nd 4784class 2nd
df-xp 4785(A × B) = {x, y (x A y B)}
df-cnv 4786A = {x, y yAx}
df-rn 4787ran A = (A “ V)
df-dm 4788dom A = ran A
df-res 4789(A B) = (A ∩ (B × V))
df-fun 4790(Fun A ↔ (A A) I )
df-fn 4791(A Fn B ↔ (Fun A dom A = B))
df-f 4792(F:A–→B ↔ (F Fn A ran F B))
df-f1 4793(F:A1-1B ↔ (F:A–→B Fun F))
df-fo 4794(F:AontoB ↔ (F Fn A ran F = B))
df-f1o 4795(F:A1-1-ontoB ↔ (F:A1-1B F:AontoB))
df-fv 4796(FA) = (℩xAFx)
df-iso 4797(H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
df-2nd 47982nd = {x, y z x = z, y}
co 5526class (AFB)
df-ov 5527(AFB) = (FA, B)
coprab 5528class {x, y, z φ}
df-oprab 5529{x, y, z φ} = {w xyz(w = x, y, z φ)}
cmpt 5652class (x A B)
df-mpt 5653(x A B) = {x, y (x A y = B)}
cmpt2 5654class (x A, y B C)
df-mpt2 5655(x A, y B C) = {x, y, z ((x A y B) z = C)}
ctxp 5736class (AB)
df-txp 5737(AB) = ((1st A) ∩ (2nd B))
cpprod 5738class PProd (A, B)
df-pprod 5739 PProd (A, B) = ((A 1st ) ⊗ (B 2nd ))
cfix 5740class Fix A
df-fix 5741 Fix A = ran (A ∩ I )
ccup 5742class Cup
df-cup 5743 Cup = (x V, y V (xy))
cdisj 5744class Disj
df-disj 5745 Disj = {x, y (xy) = }
caddcfn 5746class AddC
df-addcfn 5747 AddC = (x V, y V (x +c y))
ccompose 5748class Compose
df-compose 5749 Compose = (x V, y V (x y))
cins2 5750class Ins2 A
df-ins2 5751 Ins2 A = (V ⊗ A)
cins3 5752class Ins3 A
df-ins3 5753 Ins3 A = (A ⊗ V)
cimage 5754class ImageA
df-image 5755ImageA = ∼ (( Ins2 S Ins3 ( S SI A)) “ 1c)
cins4 5756class Ins4 A
df-ins4 5757 Ins4 A = ((1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))) “ A)
csi3 5758class SI3 A
df-si3 5759 SI3 A = (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1A)
cfuns 5760class Funs
df-funs 5761 Funs = {f Fun f}
cfns 5762class Fns
df-fns 5763 Fns = {f, a f Fn a}
ccross 5764class Cross
df-cross 5765 Cross = (x V, y V (x × y))
cpw1fn 5766class Pw1Fn
df-pw1fn 5767 Pw1Fn = (x 1c 1x)
cfullfun 5768class FullFun F
df-fullfun 5769 FullFun F = ((( I F) ( ∼ I F)) ∪ ( ∼ dom (( I F) ( ∼ I F)) × {}))
cdomfn 5770class Dom
df-domfn 5771 Dom = (x V dom x)
cranfn 5772class Ran
df-ranfn 5773 Ran = (x V ran x)
cclos1 5873class Clos1 (A, R)
df-clos1 5874 Clos1 (S, R) = {a (S a (Ra) a)}
ctrans 5889class Trans
cref 5890class Ref
cantisym 5891class Antisym
cpartial 5892class Po
cconnex 5893class Connex
cstrict 5894class Or
cfound 5895class Fr
cwe 5896class We
cext 5897class Ext
csym 5898class Sym
cer 5899class Er
df-trans 5900 Trans = {r, a x a y a z a ((xry yrz) → xrz)}
df-ref 5901 Ref = {r, a x a xrx}
df-antisym 5902 Antisym = {r, a x a y a ((xry yrx) → x = y)}
df-partial 5903 Po = (( RefTrans ) ∩ Antisym )
df-connex 5904 Connex = {r, a x a y a (xry yrx)}
df-strict 5905 Or = ( PoConnex )
df-found 5906 Fr = {r, a x((x a x) → z x y x (yrzy = z))}
df-we 5907 We = ( OrFr )
df-ext 5908 Ext = {r, a x a y a (z a (zrxzry) → x = y)}
df-sym 5909 Sym = {r, a x a y a (xryyrx)}
df-er 5910 Er = ( SymTrans )
cec 5946class [A]R
cqs 5947class (A / R)
df-ec 5948[A]R = (R “ {A})
df-qs 5952(A / R) = {y x A y = [x]R}
cmap 6000class m
cpm 6001class pm
df-map 6002m = (x V, y V {f f:y–→x})
df-pm 6003pm = (x V, y V {f (y × x) Fun f})
cen 6029class
df-en 6030 ≈ = {x, y f f:x1-1-ontoy}
cncs 6089class NC
clec 6090class c
cltc 6091class <c
cnc 6092class Nc A
cmuc 6093class ·c
ctc 6094class Tc A
c2c 6095class 2c
c3c 6096class 3c
cce 6097class c
ctcfn 6098class TcFn
df-ncs 6099 NC = (V / ≈ )
df-lec 6100c = {a, b x a y b x y}
df-ltc 6101 <c = ( ≤c I )
df-nc 6102 Nc A = [A] ≈
df-muc 6103 ·c = (m NC , n NC {a b m g n a ≈ (b × g)})
df-tc 6104 Tc A = (℩b(b NC x A b = Nc 1x))
df-2c 61052c = Nc {, V}
df-3c 61063c = Nc {, V, (V {})}
df-ce 6107c = (n NC , m NC {g ab(1a n 1b m g ≈ (am b))})
df-tcfn 6108TcFn = (x 1c Tc x)
cspac 6274class Spac
df-spac 6275 Spac = (m NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
cfrec 6310class FRec (F, I)
df-frec 6311 FRec (F, I) = Clos1 ({0c, I}, PProd ((x V (x +c 1c)), F))
ccan 6324class Can
df-can 6325 Can = {x 1xx}
cscan 6326class SCan
df-scan 6327 SCan = {x (y x {y}) V}
  Copyright terms: Public domain W3C validator