List of Syntax, Axioms (ax-) and
Definitions (df-)
Ref | Expression (see link for any distinct variable requirements)
|
wn 3 | wff
¬ φ |
wi 4 | wff
(φ → ψ) |
ax-1 5 | ⊢ (φ
→ (ψ → φ)) |
ax-2 6 | ⊢ ((φ
→ (ψ → χ)) → ((φ → ψ) → (φ → χ))) |
ax-3 7 | ⊢ ((¬ φ → ¬ ψ) → (ψ → φ)) |
ax-mp 8 | ⊢ φ
& ⊢ (φ
→ ψ)
⇒ ⊢ ψ |
wb 176 | wff (φ ↔
ψ) |
df-bi 177 | ⊢ ¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) |
wo 357 | wff (φ ∨ ψ) |
wa 358 | wff (φ ∧ ψ) |
df-or 359 | ⊢ ((φ
∨ ψ)
↔ (¬ φ → ψ)) |
df-an 360 | ⊢ ((φ
∧ ψ)
↔ ¬ (φ → ¬ ψ)) |
w3o 933 | wff (φ ∨ ψ ∨ χ) |
w3a 934 | wff (φ ∧ ψ ∧ χ) |
df-3or 935 | ⊢ ((φ
∨ ψ
∨ χ)
↔ ((φ
∨ ψ)
∨ χ)) |
df-3an 936 | ⊢ ((φ
∧ ψ
∧ χ)
↔ ((φ ∧ ψ) ∧ χ)) |
wnan 1287 | wff (φ ⊼ ψ) |
df-nan 1288 | ⊢ ((φ
⊼ ψ)
↔ ¬ (φ ∧ ψ)) |
wxo 1304 | wff (φ ⊻
ψ) |
df-xor 1305 | ⊢ ((φ
⊻ ψ) ↔ ¬ (φ ↔ ψ)) |
wtru 1316 | wff ⊤ |
wfal 1317 | wff ⊥ |
df-tru 1319 | ⊢ ( ⊤ ↔ (φ ↔ φ)) |
df-fal 1320 | ⊢ ( ⊥ ↔ ¬ ⊤
) |
whad 1378 | wff hadd(φ,
ψ, χ) |
wcad 1379 | wff cadd(φ,
ψ, χ) |
df-had 1380 | ⊢ (hadd(φ,
ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) |
df-cad 1381 | ⊢ (cadd(φ,
ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) |
ax-meredith 1406 | ⊢ (((((φ
→ ψ) → (¬ χ → ¬ θ)) → χ) → τ) → ((τ → φ) → (θ → φ))) |
wal 1540 | wff ∀xφ |
wex 1541 | wff ∃xφ |
df-ex 1542 | ⊢ (∃xφ ↔
¬ ∀x ¬ φ) |
wnf 1544 | wff Ⅎxφ |
df-nf 1545 | ⊢ (Ⅎxφ ↔
∀x(φ →
∀xφ)) |
ax-gen 1546 | ⊢ φ ⇒ ⊢ ∀xφ |
ax-5 1557 | ⊢ (∀x(φ →
ψ) → (∀xφ → ∀xψ)) |
ax-17 1616 | ⊢ (φ
→ ∀xφ) |
cv 1641 | class x |
wceq 1642 | wff A = B |
wsb 1648 | wff [y / x]φ |
df-sb 1649 | ⊢ ([y /
x]φ
↔ ((x = y → φ)
∧ ∃x(x = y ∧ φ))) |
ax-9 1654 | ⊢ ¬ ∀x ¬
x = y |
ax-8 1675 | ⊢ (x =
y → (x = z →
y = z)) |
wcel 1710 | wff A ∈ B |
ax-13 1712 | ⊢ (x =
y → (x ∈ z → y ∈ z)) |
ax-14 1714 | ⊢ (x =
y → (z ∈ x → z ∈ y)) |
ax-6 1729 | ⊢ (¬ ∀xφ → ∀x ¬
∀xφ) |
ax-7 1734 | ⊢ (∀x∀yφ →
∀y∀xφ) |
ax-11 1746 | ⊢ (x =
y → (∀yφ → ∀x(x = y →
φ))) |
ax-12 1925 | ⊢ (¬ x =
y → (y = z →
∀x
y = z)) |
ax-4 2135 | ⊢ (∀xφ →
φ) |
ax-5o 2136 | ⊢ (∀x(∀xφ →
ψ) → (∀xφ → ∀xψ)) |
ax-6o 2137 | ⊢ (¬ ∀x ¬
∀xφ → φ) |
ax-9o 2138 | ⊢ (∀x(x = y → ∀xφ) → φ) |
ax-10o 2139 | ⊢ (∀x x = y → (∀xφ → ∀yφ)) |
ax-10 2140 | ⊢ (∀x x = y → ∀y y = x) |
ax-11o 2141 | ⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) |
ax-12o 2142 | ⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) |
ax-15 2143 | ⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x
∈ y
→ ∀z x ∈ y))) |
ax-16 2144 | ⊢ (∀x x = y → (φ
→ ∀xφ)) |
weu 2204 | wff ∃!xφ |
wmo 2205 | wff ∃*xφ |
df-eu 2208 | ⊢ (∃!xφ ↔
∃y∀x(φ ↔ x = y)) |
df-mo 2209 | ⊢ (∃*xφ ↔
(∃xφ → ∃!xφ)) |
ax-7d 2295 | ⊢ (∀x∀yφ →
∀y∀xφ) |
ax-8d 2296 | ⊢ (x =
y → (x = z →
y = z)) |
ax-9d1 2297 | ⊢ ¬ ∀x ¬
x = x |
ax-9d2 2298 | ⊢ ¬ ∀x ¬
x = y |
ax-10d 2299 | ⊢ (∀x x = y → ∀y y = x) |
ax-11d 2300 | ⊢ (x =
y → (∀yφ → ∀x(x = y →
φ))) |
ax-ext 2334 | ⊢ (∀z(z ∈ x ↔
z ∈
y) → x = y) |
cab 2339 | class {x ∣ φ} |
df-clab 2340 | ⊢ (x ∈ {y ∣ φ}
↔ [x / y]φ) |
df-cleq 2346 | ⊢ (∀x(x ∈ y ↔
x ∈
z) → y = z) ⇒ ⊢ (A =
B ↔ ∀x(x ∈ A ↔ x ∈ B)) |
df-clel 2349 | ⊢ (A ∈ B ↔
∃x(x = A ∧ x ∈ B)) |
wnfc 2476 | wff ℲxA |
df-nfc 2478 | ⊢ (ℲxA ↔ ∀yℲx
y ∈
A) |
wne 2516 | wff A ≠ B |
wnel 2517 | wff A ∉ B |
df-ne 2518 | ⊢ (A ≠
B ↔ ¬ A = B) |
df-nel 2519 | ⊢ (A ∉ B ↔
¬ A ∈
B) |
wral 2614 | wff ∀x ∈ A φ |
wrex 2615 | wff ∃x ∈ A φ |
wreu 2616 | wff ∃!x ∈ A φ |
wrmo 2617 | wff ∃*x ∈ A φ |
crab 2618 | class {x ∈ A ∣ φ} |
df-ral 2619 | ⊢ (∀x ∈ A φ ↔
∀x(x ∈ A →
φ)) |
df-rex 2620 | ⊢ (∃x ∈ A φ ↔
∃x(x ∈ A ∧ φ)) |
df-reu 2621 | ⊢ (∃!x ∈ A φ ↔
∃!x(x ∈ A ∧ φ)) |
df-rmo 2622 | ⊢ (∃*x ∈ A φ ↔
∃*x(x ∈ A ∧ φ)) |
df-rab 2623 | ⊢ {x ∈ A ∣ φ} =
{x ∣
(x ∈
A ∧ φ)} |
cvv 2859 | class V |
df-v 2861 | ⊢ V = {x ∣ x = x} |
wsbc 3046 | wff [̣A /
x]̣φ |
df-sbc 3047 | ⊢ ([̣A /
x]̣φ ↔ A ∈ {x ∣ φ}) |
csb 3136 | class [A /
x]B |
df-csb 3137 | ⊢ [A /
x]B = {y ∣ [̣A /
x]̣y ∈ B} |
cnin 3204 | class (A ⩃
B) |
ccompl 3205 | class
∼ A |
cdif 3206 | class (A ∖ B) |
cun 3207 | class (A ∪
B) |
cin 3208 | class (A ∩
B) |
csymdif 3209 | class
(A ⊕ B) |
df-nin 3211 | ⊢ (A ⩃
B) = {x
∣ (x
∈ A ⊼ x ∈ B)} |
df-compl 3212 | ⊢ ∼ A =
(A ⩃ A) |
df-in 3213 | ⊢ (A ∩
B) = ∼ (A ⩃ B) |
df-un 3214 | ⊢ (A ∪
B) = ( ∼ A ⩃ ∼ B) |
df-dif 3215 | ⊢ (A ∖ B) =
(A ∩ ∼ B) |
df-symdif 3216 | ⊢ (A ⊕
B) = ((A ∖ B) ∪ (B
∖ A)) |
wss 3257 | wff A ⊆ B |
wpss 3258 | wff A ⊊
B |
df-ss 3259 | ⊢ (A ⊆ B ↔
(A ∩ B) = A) |
df-pss 3261 | ⊢ (A ⊊
B ↔ (A ⊆ B ∧ A ≠ B)) |
c0 3550 | class ∅ |
df-nul 3551 | ⊢ ∅ = (V ∖ V) |
cif 3662 | class if(φ,
A, B) |
df-if 3663 | ⊢ if(φ,
A, B) =
{x ∣
((x ∈
A ∧ φ) ∨
(x ∈
B ∧ ¬
φ))} |
cpw 3722 | class ℘A |
df-pw 3724 | ⊢ ℘A = {x ∣ x ⊆ A} |
csn 3737 | class {A} |
cpr 3738 | class {A, B} |
ctp 3739 | class {A, B, C} |
df-sn 3741 | ⊢ {A} =
{x ∣
x = A} |
df-pr 3742 | ⊢ {A, B} = ({A} ∪
{B}) |
df-tp 3743 | ⊢ {A, B, C} =
({A, B}
∪ {C}) |
cuni 3891 | class ∪A |
df-uni 3892 | ⊢ ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} |
cint 3926 | class ∩A |
df-int 3927 | ⊢ ∩A = {x ∣ ∀y(y ∈ A →
x ∈
y)} |
ciun 3969 | class ∪x ∈ A B |
ciin 3970 | class ∩x ∈ A B |
df-iun 3971 | ⊢ ∪x ∈ A B = {y ∣ ∃x ∈ A y ∈ B} |
df-iin 3972 | ⊢ ∩x ∈ A B = {y ∣ ∀x ∈ A y ∈ B} |
copk 4057 | class ⟪A,
B⟫ |
df-opk 4058 | ⊢ ⟪A,
B⟫ = {{A}, {A, B}} |
ax-nin 4078 | ⊢ ∃z∀w(w ∈ z ↔
(w ∈
x ⊼
w ∈
y)) |
ax-xp 4079 | ⊢ ∃y∀z(z ∈ y ↔
∃w∃t(z = ⟪w,
t⟫ ∧ t ∈ x)) |
ax-cnv 4080 | ⊢ ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |
ax-1c 4081 | ⊢ ∃x∀y(y ∈ x ↔
∃z∀w(w ∈ y ↔ w =
z)) |
ax-sset 4082 | ⊢ ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |
ax-si 4083 | ⊢ ∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
ax-ins2 4084 | ⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) |
ax-ins3 4085 | ⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
ax-typlower 4086 | ⊢ ∃y∀z(z ∈ y ↔
∀w⟪w,
{z}⟫ ∈ x) |
ax-sn 4087 | ⊢ ∃y∀z(z ∈ y ↔
z = x) |
cuni1 4133 | class ⋃1A |
c1c 4134 | class 1c |
cpw1 4135 | class ℘1A |
df-1c 4136 | ⊢ 1c = {x ∣ ∃y x = {y}} |
df-pw1 4137 | ⊢ ℘1A = (℘A ∩ 1c) |
df-uni1 4138 | ⊢ ⋃1A = ∪(A ∩ 1c) |
cxpk 4174 | class (A
×k B) |
ccnvk 4175 | class ◡kA |
cins2k 4176 | class
Ins2k A |
cins3k 4177 | class
Ins3k A |
cp6 4178 | class P6 A |
cimak 4179 | class (A
“k B) |
ccomk 4180 | class (A ∘k B) |
csik 4181 | class SIk A |
cimagek 4182 | class
ImagekA |
cssetk 4183 | class
Sk |
cidk 4184 | class Ik |
df-xpk 4185 | ⊢ (A
×k B) = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ (y ∈ A ∧ z ∈ B))} |
df-cnvk 4186 | ⊢ ◡kA = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧
⟪z, y⟫ ∈
A)} |
df-ins2k 4187 | ⊢ Ins2k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, v⟫ ∈
A))} |
df-ins3k 4188 | ⊢ Ins3k A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u∃v(y = {{t}} ∧ z =
⟪u, v⟫ ∧
⟪t, u⟫ ∈
A))} |
df-imak 4189 | ⊢ (A
“k B) = {x ∣ ∃y ∈ B
⟪y, x⟫ ∈
A} |
df-cok 4190 | ⊢ (A ∘k B) = (( Ins2k A ∩ Ins3k ◡kB) “k V) |
df-p6 4191 | ⊢ P6 A = {x ∣ (V ×k {{x}}) ⊆ A} |
df-sik 4192 | ⊢ SIk A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ ∃t∃u(y = {t} ∧ z = {u} ∧
⟪t, u⟫ ∈
A))} |
df-ssetk 4193 | ⊢ Sk = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y ⊆ z)} |
df-imagek 4194 | ⊢ ImagekA = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) |
df-idk 4195 | ⊢ Ik = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ y = z)} |
cio 4337 | class (℩xφ) |
df-iota 4339 | ⊢ (℩xφ) = ∪{y ∣ {x ∣ φ} =
{y}} |
cnnc 4373 | class Nn |
c0c 4374 | class 0c |
cplc 4375 | class (A
+c B) |
cfin 4376 | class Fin |
df-0c 4377 | ⊢ 0c = {∅} |
df-addc 4378 | ⊢ (A
+c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) =
∅ ∧
x = (y
∪ z))} |
df-nnc 4379 | ⊢ Nn = ∩{b ∣ (0c ∈ b ∧ ∀y ∈ b (y
+c 1c) ∈
b)} |
df-fin 4380 | ⊢ Fin = ∪ Nn |
clefin 4432 | class
≤fin |
cltfin 4433 | class
<fin |
cncfin 4434 | class
Ncfin A |
ctfin 4435 | class Tfin
A |
cevenfin 4436 | class
Evenfin |
coddfin 4437 | class
Oddfin |
wsfin 4438 | wff Sfin
(A, B) |
cspfin 4439 | class
Spfin |
df-lefin 4440 | ⊢ ≤fin = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |
df-ltfin 4441 | ⊢ <fin = {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |
df-ncfin 4442 | ⊢ Ncfin
A = (℩x(x ∈ Nn ∧ A ∈ x)) |
df-tfin 4443 | ⊢ Tfin
M = if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) |
df-evenfin 4444 | ⊢ Evenfin
= {x ∣
(∃n
∈ Nn x = (n
+c n) ∧ x ≠ ∅)} |
df-oddfin 4445 | ⊢ Oddfin
= {x ∣
(∃n
∈ Nn x = ((n
+c n)
+c 1c) ∧
x ≠ ∅)} |
df-sfin 4446 | ⊢ ( Sfin
(M, N)
↔ (M ∈ Nn ∧ N ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ N))) |
df-spfin 4447 | ⊢ Spfin =
∩{a ∣ ( Ncfin
V ∈ a
∧ ∀x ∈ a ∀z( Sfin (z,
x) → z ∈ a))} |
cop 4561 | class 〈A, B〉 |
cphi 4562 | class Phi A |
cproj1 4563 | class
Proj1 A |
cproj2 4564 | class
Proj2 A |
df-phi 4565 | ⊢ Phi A = {y ∣ ∃x ∈ A y =
if(x ∈
Nn , (x
+c 1c), x)} |
df-op 4566 | ⊢ 〈A, B〉 = ({x ∣ ∃y ∈ A x = Phi y} ∪
{x ∣
∃y ∈ B x = ( Phi y ∪ {0c})}) |
df-proj1 4567 | ⊢ Proj1 A = {x ∣ Phi x ∈ A} |
df-proj2 4568 | ⊢ Proj2 A = {x ∣ ( Phi x ∪ {0c}) ∈ A} |
copab 4622 | class {〈x, y〉 ∣ φ} |
df-opab 4623 | ⊢ {〈x, y〉 ∣ φ} = {z
∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
wbr 4639 | wff ARB |
df-br 4640 | ⊢ (ARB ↔ 〈A, B〉 ∈ R) |
c1st 4717 | class 1st |
cswap 4718 | class Swap
|
csset 4719 | class S |
csi 4720 | class SI A |
ccom 4721 | class (A ∘ B) |
cima 4722 | class (A “
B) |
df-1st 4723 | ⊢ 1st = {〈x, y〉 ∣ ∃z x = 〈y, z〉} |
df-swap 4724 | ⊢ Swap = {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |
df-sset 4725 | ⊢ S = {〈x, y〉 ∣ x ⊆ y} |
df-co 4726 | ⊢ (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
df-ima 4727 | ⊢ (A “
B) = {x
∣ ∃y ∈ B yAx} |
df-si 4728 | ⊢ SI A = {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} |
cep 4762 | class E |
cid 4763 | class I |
df-eprel 4764 | ⊢ E = {〈x, y〉 ∣ x ∈ y} |
df-id 4767 | ⊢ I = {〈x, y〉 ∣ x = y} |
cxp 4770 | class (A ×
B) |
ccnv 4771 | class ◡A |
cdm 4772 | class dom A |
crn 4773 | class ran A |
cres 4774 | class (A ↾ B) |
wfun 4775 | wff Fun A |
wfn 4776 | wff A Fn B |
wf 4777 | wff F:A–→B |
wf1 4778 | wff F:A–1-1→B |
wfo 4779 | wff F:A–onto→B |
wf1o 4780 | wff F:A–1-1-onto→B |
cfv 4781 | class (F
‘A) |
wiso 4782 | wff H Isom R, S (A, B) |
c2nd 4783 | class 2nd |
df-xp 4784 | ⊢ (A ×
B) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} |
df-cnv 4785 | ⊢ ◡A =
{〈x,
y〉 ∣ yAx} |
df-rn 4786 | ⊢ ran A =
(A “ V) |
df-dm 4787 | ⊢ dom A = ran
◡A |
df-res 4788 | ⊢ (A ↾ B) =
(A ∩ (B × V)) |
df-fun 4789 | ⊢ (Fun A
↔ (A ∘ ◡A) ⊆ I ) |
df-fn 4790 | ⊢ (A Fn
B ↔ (Fun A ∧ dom A = B)) |
df-f 4791 | ⊢ (F:A–→B
↔ (F Fn A ∧ ran F ⊆ B)) |
df-f1 4792 | ⊢ (F:A–1-1→B ↔
(F:A–→B
∧ Fun ◡F)) |
df-fo 4793 | ⊢ (F:A–onto→B ↔
(F Fn A
∧ ran F =
B)) |
df-f1o 4794 | ⊢ (F:A–1-1-onto→B ↔
(F:A–1-1→B ∧ F:A–onto→B)) |
df-fv 4795 | ⊢ (F
‘A) = (℩xAFx) |
df-iso 4796 | ⊢ (H Isom
R, S
(A, B)
↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) |
df-2nd 4797 | ⊢ 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
co 5525 | class (AFB) |
df-ov 5526 | ⊢ (AFB) = (F ‘〈A, B〉) |
coprab 5527 | class
{〈〈x, y〉, z〉 ∣ φ} |
df-oprab 5528 | ⊢ {〈〈x, y〉, z〉 ∣ φ} =
{w ∣
∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ φ)} |
cmpt 5651 | class (x ∈ A ↦ B) |
df-mpt 5652 | ⊢ (x ∈ A ↦ B) = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
cmpt2 5653 | class (x ∈ A, y ∈ B ↦ C) |
df-mpt2 5654 | ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} |
ctxp 5735 | class (A ⊗
B) |
df-txp 5736 | ⊢ (A ⊗
B) = ((◡1st ∘ A) ∩
(◡2nd ∘ B)) |
cpprod 5737 | class
PProd (A, B) |
df-pprod 5738 | ⊢ PProd (A, B) =
((A ∘
1st ) ⊗ (B ∘ 2nd )) |
cfix 5739 | class Fix A |
df-fix 5740 | ⊢ Fix A = ran (A ∩
I ) |
ccup 5741 | class Cup |
df-cup 5742 | ⊢ Cup = (x ∈ V, y ∈ V ↦ (x ∪
y)) |
cdisj 5743 | class Disj |
df-disj 5744 | ⊢ Disj = {〈x, y〉 ∣ (x ∩
y) = ∅} |
caddcfn 5745 | class
AddC |
df-addcfn 5746 | ⊢ AddC = (x ∈ V, y ∈ V ↦ (x
+c y)) |
ccompose 5747 | class
Compose |
df-compose 5748 | ⊢ Compose =
(x ∈ V,
y ∈ V
↦ (x
∘ y)) |
cins2 5749 | class Ins2 A |
df-ins2 5750 | ⊢ Ins2 A = (V ⊗ A) |
cins3 5751 | class Ins3 A |
df-ins3 5752 | ⊢ Ins3 A = (A ⊗
V) |
cimage 5753 | class
ImageA |
df-image 5754 | ⊢ ImageA =
∼ (( Ins2 S
⊕ Ins3 ( S
∘ ◡ SI A)) “ 1c) |
cins4 5755 | class Ins4 A |
df-ins4 5756 | ⊢ Ins4 A = (◡(1st ⊗ ((1st
∘ 2nd ) ⊗ ((1st
∘ 2nd ) ∘ 2nd ))) “ A) |
csi3 5757 | class SI3 A |
df-si3 5758 | ⊢ SI3 A = (( SI
1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1A) |
cfuns 5759 | class Funs |
df-funs 5760 | ⊢ Funs = {f ∣ Fun f} |
cfns 5761 | class Fns |
df-fns 5762 | ⊢ Fns = {〈f, a〉 ∣ f Fn
a} |
ccross 5763 | class
Cross |
df-cross 5764 | ⊢ Cross = (x ∈ V, y ∈ V ↦ (x ×
y)) |
cpw1fn 5765 | class
Pw1Fn |
df-pw1fn 5766 | ⊢ Pw1Fn = (x ∈
1c ↦ ℘1∪x) |
cfullfun 5767 | class
FullFun F |
df-fullfun 5768 | ⊢ FullFun F = ((( I ∘
F) ∖ (
∼ I ∘ F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) |
cdomfn 5769 | class
Dom |
df-domfn 5770 | ⊢ Dom = (x ∈ V ↦ dom x) |
cranfn 5771 | class
Ran |
df-ranfn 5772 | ⊢ Ran = (x ∈ V ↦ ran x) |
cclos1 5872 | class
Clos1 (A, R) |
df-clos1 5873 | ⊢ Clos1 (S, R) = ∩{a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} |
ctrans 5888 | class
Trans |
cref 5889 | class Ref |
cantisym 5890 | class
Antisym |
cpartial 5891 | class
Po |
cconnex 5892 | class
Connex |
cstrict 5893 | class
Or |
cfound 5894 | class
Fr |
cwe 5895 | class We |
cext 5896 | class Ext |
csym 5897 | class Sym |
cer 5898 | class Er |
df-trans 5899 | ⊢ Trans = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) →
xrz)} |
df-ref 5900 | ⊢ Ref = {〈r, a〉 ∣ ∀x ∈ a xrx} |
df-antisym 5901 | ⊢ Antisym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) →
x = y)} |
df-partial 5902 | ⊢ Po = (( Ref ∩ Trans ) ∩
Antisym ) |
df-connex 5903 | ⊢ Connex = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |
df-strict 5904 | ⊢ Or = ( Po ∩ Connex
) |
df-found 5905 | ⊢ Fr = {〈r, a〉 ∣ ∀x((x ⊆ a ∧ x ≠ ∅) → ∃z ∈ x ∀y ∈ x (yrz → y =
z))} |
df-we 5906 | ⊢ We = ( Or ∩ Fr
) |
df-ext 5907 | ⊢ Ext = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔
zry) →
x = y)} |
df-sym 5908 | ⊢ Sym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry →
yrx)} |
df-er 5909 | ⊢ Er = ( Sym ∩ Trans
) |
cec 5945 | class [A]R |
cqs 5946 | class (A /
R) |
df-ec 5947 | ⊢ [A]R = (R “
{A}) |
df-qs 5951 | ⊢ (A /
R) = {y
∣ ∃x ∈ A y = [x]R} |
cmap 5999 | class ↑m |
cpm 6000 | class ↑pm |
df-map 6001 | ⊢ ↑m = (x ∈ V, y ∈ V ↦ {f ∣ f:y–→x}) |
df-pm 6002 | ⊢ ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x)
∣ Fun f}) |
cen 6028 | class ≈ |
df-en 6029 | ⊢ ≈ = {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} |
cncs 6088 | class NC |
clec 6089 | class ≤c |
cltc 6090 | class <c |
cnc 6091 | class Nc A |
cmuc 6092 | class ·c |
ctc 6093 | class Tc
A |
c2c 6094 | class 2c |
c3c 6095 | class 3c |
cce 6096 | class ↑c |
ctcfn 6097 | class TcFn |
df-ncs 6098 | ⊢ NC = (V /
≈ ) |
df-lec 6099 | ⊢ ≤c = {〈a, b〉 ∣ ∃x ∈ a ∃y ∈ b x ⊆ y} |
df-ltc 6100 | ⊢ <c = ( ≤c ∖ I ) |
df-nc 6101 | ⊢ Nc A = [A]
≈ |
df-muc 6102 | ⊢ ·c = (m ∈ NC , n ∈ NC ↦ {a ∣ ∃b ∈ m ∃g ∈ n a ≈
(b × g)}) |
df-tc 6103 | ⊢ Tc
A = (℩b(b ∈ NC ∧ ∃x ∈ A b = Nc ℘1x)) |
df-2c 6104 | ⊢ 2c = Nc {∅,
V} |
df-3c 6105 | ⊢ 3c = Nc {∅, V, (V ∖ {∅})} |
df-ce 6106 | ⊢ ↑c = (n ∈ NC , m ∈ NC ↦ {g ∣ ∃a∃b(℘1a ∈ n ∧ ℘1b ∈ m ∧ g ≈ (a
↑m b))}) |
df-tcfn 6107 | ⊢ TcFn = (x
∈ 1c ↦ Tc ∪x) |
cspac 6273 | class Spac |
df-spac 6274 | ⊢ Spac =
(m ∈
NC ↦ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
cfrec 6309 | class FRec (F, I) |
df-frec 6310 | ⊢ FRec (F, I) = Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
F)) |
ccan 6323 | class Can |
df-can 6324 | ⊢ Can = {x ∣ ℘1x ≈ x} |
cscan 6325 | class SCan |
df-scan 6326 | ⊢ SCan = {x ∣ (y ∈ x ↦ {y}) ∈
V} |