| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccats1val2 | GIF version | ||
| Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| ccats1val2 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
| 2 | s1cl 11073 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
| 3 | 2 | 3ad2ant2 1021 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 〈“𝑆”〉 ∈ Word 𝑉) |
| 4 | lencl 10996 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 5 | 4 | nn0zd 9492 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 6 | elfzomin 10333 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) | |
| 7 | 1, 5, 6 | 3syl 17 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 8 | s1leng 11076 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → (♯‘〈“𝑆”〉) = 1) | |
| 9 | 8 | oveq2d 5959 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ((♯‘𝑊) + (♯‘〈“𝑆”〉)) = ((♯‘𝑊) + 1)) |
| 10 | 9 | oveq2d 5959 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 11 | 10 | 3ad2ant2 1021 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 12 | 7, 11 | eleqtrrd 2284 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 13 | eleq1 2267 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) | |
| 14 | 13 | 3ad2ant3 1022 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) |
| 15 | 12, 14 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 16 | ccatval2 11052 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) | |
| 17 | 1, 3, 15, 16 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) |
| 18 | oveq1 5950 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) | |
| 19 | 18 | 3ad2ant3 1022 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) |
| 20 | 4 | nn0cnd 9349 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
| 21 | 20 | subidd 8370 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 22 | 21 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 23 | 19, 22 | eqtrd 2237 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0) |
| 24 | 23 | fveq2d 5579 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘(𝐼 − (♯‘𝑊))) = (〈“𝑆”〉‘0)) |
| 25 | s1fv 11078 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
| 26 | 25 | 3ad2ant2 1021 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘0) = 𝑆) |
| 27 | 17, 24, 26 | 3eqtrd 2241 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 − cmin 8242 ℤcz 9371 ..^cfzo 10263 ♯chash 10918 Word cword 10992 ++ cconcat 11044 〈“cs1 11067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-1o 6501 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 df-ihash 10919 df-word 10993 df-concat 11045 df-s1 11068 |
| This theorem is referenced by: ccatws1ls 11092 ccatw2s1p2 11095 |
| Copyright terms: Public domain | W3C validator |