| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccats1val2 | GIF version | ||
| Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| ccats1val2 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
| 2 | s1cl 11149 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
| 3 | 2 | 3ad2ant2 1043 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 〈“𝑆”〉 ∈ Word 𝑉) |
| 4 | lencl 11070 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 5 | 4 | nn0zd 9563 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 6 | elfzomin 10407 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) | |
| 7 | 1, 5, 6 | 3syl 17 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 8 | s1leng 11152 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → (♯‘〈“𝑆”〉) = 1) | |
| 9 | 8 | oveq2d 6016 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ((♯‘𝑊) + (♯‘〈“𝑆”〉)) = ((♯‘𝑊) + 1)) |
| 10 | 9 | oveq2d 6016 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 11 | 10 | 3ad2ant2 1043 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 12 | 7, 11 | eleqtrrd 2309 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 13 | eleq1 2292 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) | |
| 14 | 13 | 3ad2ant3 1044 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) |
| 15 | 12, 14 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 16 | ccatval2 11128 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) | |
| 17 | 1, 3, 15, 16 | syl3anc 1271 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) |
| 18 | oveq1 6007 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) | |
| 19 | 18 | 3ad2ant3 1044 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) |
| 20 | 4 | nn0cnd 9420 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
| 21 | 20 | subidd 8441 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 22 | 21 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 23 | 19, 22 | eqtrd 2262 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0) |
| 24 | 23 | fveq2d 5630 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘(𝐼 − (♯‘𝑊))) = (〈“𝑆”〉‘0)) |
| 25 | s1fv 11154 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
| 26 | 25 | 3ad2ant2 1043 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘0) = 𝑆) |
| 27 | 17, 24, 26 | 3eqtrd 2266 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 − cmin 8313 ℤcz 9442 ..^cfzo 10334 ♯chash 10992 Word cword 11066 ++ cconcat 11120 〈“cs1 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-ihash 10993 df-word 11067 df-concat 11121 df-s1 11144 |
| This theorem is referenced by: ccatws1ls 11168 ccatw2s1p2 11171 |
| Copyright terms: Public domain | W3C validator |