ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdlenge2n0 GIF version

Theorem wrdlenge2n0 11046
Description: A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlenge2n0 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)

Proof of Theorem wrdlenge2n0
StepHypRef Expression
1 1red 8102 . . . . 5 (𝑊 ∈ Word 𝑉 → 1 ∈ ℝ)
2 2re 9121 . . . . . 6 2 ∈ ℝ
32a1i 9 . . . . 5 (𝑊 ∈ Word 𝑉 → 2 ∈ ℝ)
4 lencl 11015 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0red 9364 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
61, 3, 53jca 1180 . . . 4 (𝑊 ∈ Word 𝑉 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
76adantr 276 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
8 simpr 110 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
9 1lt2 9221 . . . 4 1 < 2
108, 9jctil 312 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (1 < 2 ∧ 2 ≤ (♯‘𝑊)))
11 ltleletr 8169 . . 3 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((1 < 2 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ (♯‘𝑊)))
127, 10, 11sylc 62 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ (♯‘𝑊))
13 wrdlenge1n0 11044 . . 3 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ 1 ≤ (♯‘𝑊)))
1413adantr 276 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 ≠ ∅ ↔ 1 ≤ (♯‘𝑊)))
1512, 14mpbird 167 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2177  wne 2377  c0 3464   class class class wbr 4050  cfv 5279  cr 7939  1c1 7941   < clt 8122  cle 8123  2c2 9102  chash 10937  Word cword 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-dom 6841  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-ihash 10938  df-word 11012
This theorem is referenced by:  pfxtrcfv0  11165
  Copyright terms: Public domain W3C validator