MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsgt0 Structured version   Visualization version   GIF version

Theorem expsgt0 28322
Description: A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsgt0 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))

Proof of Theorem expsgt0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21breq2d 5119 . . . . 5 (𝑚 = 0s → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s 0s )))
32imbi2d 340 . . . 4 (𝑚 = 0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))))
4 oveq2 7395 . . . . . 6 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54breq2d 5119 . . . . 5 (𝑚 = 𝑛 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑛)))
65imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛))))
7 oveq2 7395 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87breq2d 5119 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s(𝑛 +s 1s ))))
98imbi2d 340 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
10 oveq2 7395 . . . . . 6 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110breq2d 5119 . . . . 5 (𝑚 = 𝑁 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑁)))
1211imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))))
13 0slt1s 27741 . . . . . 6 0s <s 1s
14 exps0 28313 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
1513, 14breqtrrid 5145 . . . . 5 (𝐴 No → 0s <s (𝐴s 0s ))
1615adantr 480 . . . 4 ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))
17 simp2l 1200 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝐴 No )
18 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝑛 ∈ ℕ0s)
19 expscl 28317 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
2017, 18, 19syl2anc 584 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s𝑛) ∈ No )
21 simp3 1138 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s𝑛))
22 simp2r 1201 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s 𝐴)
2320, 17, 21, 22mulsgt0d 28048 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s ((𝐴s𝑛) ·s 𝐴))
24 expsp1 28315 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2517, 18, 24syl2anc 584 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2623, 25breqtrrd 5135 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s(𝑛 +s 1s )))
27263exp 1119 . . . . 5 (𝑛 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → ( 0s <s (𝐴s𝑛) → 0s <s (𝐴s(𝑛 +s 1s )))))
2827a2d 29 . . . 4 (𝑛 ∈ ℕ0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛)) → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
293, 6, 9, 12, 16, 28n0sind 28225 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁)))
3029expd 415 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → ( 0s <s 𝐴 → 0s <s (𝐴s𝑁))))
31303imp21 1113 1 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387   No csur 27551   <s cslt 27552   0s c0s 27734   1s c1s 27735   +s cadds 27866   ·s cmuls 28009  0scnn0s 28206  scexps 28298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-seqs 28178  df-n0s 28208  df-nns 28209  df-zs 28267  df-exps 28299
This theorem is referenced by:  pw2gt0divsd  28328  pw2ge0divsd  28329  pw2cut  28335  zs12bday  28343
  Copyright terms: Public domain W3C validator