MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsgt0 Structured version   Visualization version   GIF version

Theorem expsgt0 28416
Description: A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsgt0 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))

Proof of Theorem expsgt0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7440 . . . . . 6 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21breq2d 5154 . . . . 5 (𝑚 = 0s → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s 0s )))
32imbi2d 340 . . . 4 (𝑚 = 0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))))
4 oveq2 7440 . . . . . 6 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54breq2d 5154 . . . . 5 (𝑚 = 𝑛 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑛)))
65imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛))))
7 oveq2 7440 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87breq2d 5154 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s(𝑛 +s 1s ))))
98imbi2d 340 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
10 oveq2 7440 . . . . . 6 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110breq2d 5154 . . . . 5 (𝑚 = 𝑁 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑁)))
1211imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))))
13 0slt1s 27875 . . . . . 6 0s <s 1s
14 exps0 28411 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
1513, 14breqtrrid 5180 . . . . 5 (𝐴 No → 0s <s (𝐴s 0s ))
1615adantr 480 . . . 4 ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))
17 simp2l 1199 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝐴 No )
18 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝑛 ∈ ℕ0s)
19 expscl 28414 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
2017, 18, 19syl2anc 584 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s𝑛) ∈ No )
21 simp3 1138 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s𝑛))
22 simp2r 1200 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s 𝐴)
2320, 17, 21, 22mulsgt0d 28172 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s ((𝐴s𝑛) ·s 𝐴))
24 expsp1 28413 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2517, 18, 24syl2anc 584 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2623, 25breqtrrd 5170 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s(𝑛 +s 1s )))
27263exp 1119 . . . . 5 (𝑛 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → ( 0s <s (𝐴s𝑛) → 0s <s (𝐴s(𝑛 +s 1s )))))
2827a2d 29 . . . 4 (𝑛 ∈ ℕ0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛)) → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
293, 6, 9, 12, 16, 28n0sind 28338 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁)))
3029expd 415 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → ( 0s <s 𝐴 → 0s <s (𝐴s𝑁))))
31303imp21 1113 1 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432   No csur 27685   <s cslt 27686   0s c0s 27868   1s c1s 27869   +s cadds 27993   ·s cmuls 28133  0scnn0s 28319  scexps 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec 27972  df-norec2 27983  df-adds 27994  df-negs 28054  df-subs 28055  df-muls 28134  df-seqs 28291  df-n0s 28321  df-nns 28322  df-zs 28366  df-exps 28398
This theorem is referenced by:  cutpw2  28418  pw2bday  28419  pw2cut  28421  zs12bday  28425
  Copyright terms: Public domain W3C validator