MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsgt0 Structured version   Visualization version   GIF version

Theorem expsgt0 28353
Description: A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsgt0 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))

Proof of Theorem expsgt0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . . 6 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21breq2d 5101 . . . . 5 (𝑚 = 0s → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s 0s )))
32imbi2d 340 . . . 4 (𝑚 = 0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))))
4 oveq2 7349 . . . . . 6 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54breq2d 5101 . . . . 5 (𝑚 = 𝑛 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑛)))
65imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛))))
7 oveq2 7349 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87breq2d 5101 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s(𝑛 +s 1s ))))
98imbi2d 340 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
10 oveq2 7349 . . . . . 6 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110breq2d 5101 . . . . 5 (𝑚 = 𝑁 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑁)))
1211imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))))
13 0slt1s 27766 . . . . . 6 0s <s 1s
14 exps0 28343 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
1513, 14breqtrrid 5127 . . . . 5 (𝐴 No → 0s <s (𝐴s 0s ))
1615adantr 480 . . . 4 ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))
17 simp2l 1200 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝐴 No )
18 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝑛 ∈ ℕ0s)
19 expscl 28347 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
2017, 18, 19syl2anc 584 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s𝑛) ∈ No )
21 simp3 1138 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s𝑛))
22 simp2r 1201 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s 𝐴)
2320, 17, 21, 22mulsgt0d 28077 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s ((𝐴s𝑛) ·s 𝐴))
24 expsp1 28345 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2517, 18, 24syl2anc 584 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2623, 25breqtrrd 5117 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s(𝑛 +s 1s )))
27263exp 1119 . . . . 5 (𝑛 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → ( 0s <s (𝐴s𝑛) → 0s <s (𝐴s(𝑛 +s 1s )))))
2827a2d 29 . . . 4 (𝑛 ∈ ℕ0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛)) → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
293, 6, 9, 12, 16, 28n0sind 28254 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁)))
3029expd 415 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → ( 0s <s 𝐴 → 0s <s (𝐴s𝑁))))
31303imp21 1113 1 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110   class class class wbr 5089  (class class class)co 7341   No csur 27571   <s cslt 27572   0s c0s 27759   1s c1s 27760   +s cadds 27895   ·s cmuls 28038  0scnn0s 28235  scexps 28328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-seqs 28207  df-n0s 28237  df-nns 28238  df-zs 28296  df-exps 28329
This theorem is referenced by:  pw2gt0divsd  28361  pw2ge0divsd  28362  pw2sltdivmuld  28366  pw2sltmuldiv2d  28367  pw2cut  28373  zs12bday  28387
  Copyright terms: Public domain W3C validator