| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . 6
⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s
)) |
| 2 | 1 | breq2d 5136 |
. . . . 5
⊢ (𝑚 = 0s → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s 0s
))) |
| 3 | 2 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 0s → (((𝐴 ∈
No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)))) |
| 4 | | oveq2 7418 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) |
| 5 | 4 | breq2d 5136 |
. . . . 5
⊢ (𝑚 = 𝑛 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑛))) |
| 6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)))) |
| 7 | | oveq2 7418 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s
))) |
| 8 | 7 | breq2d 5136 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s(𝑛 +s 1s
)))) |
| 9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) →
(((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) |
| 10 | | oveq2 7418 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) |
| 11 | 10 | breq2d 5136 |
. . . . 5
⊢ (𝑚 = 𝑁 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑁))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)))) |
| 13 | | 0slt1s 27798 |
. . . . . 6
⊢
0s <s 1s |
| 14 | | exps0 28370 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴↑s 0s ) =
1s ) |
| 15 | 13, 14 | breqtrrid 5162 |
. . . . 5
⊢ (𝐴 ∈
No → 0s <s (𝐴↑s 0s
)) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)) |
| 17 | | simp2l 1200 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝐴 ∈ No
) |
| 18 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝑛 ∈
ℕ0s) |
| 19 | | expscl 28374 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s𝑛) ∈ No
) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s𝑛) ∈ No
) |
| 21 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s𝑛)) |
| 22 | | simp2r 1201 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
𝐴) |
| 23 | 20, 17, 21, 22 | mulsgt0d 28105 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
((𝐴↑s𝑛) ·s 𝐴)) |
| 24 | | expsp1 28372 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
| 25 | 17, 18, 24 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
| 26 | 23, 25 | breqtrrd 5152 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s(𝑛 +s 1s
))) |
| 27 | 26 | 3exp 1119 |
. . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 0s <s 𝐴) → ( 0s <s (𝐴↑s𝑛) → 0s <s
(𝐴↑s(𝑛 +s 1s
))))) |
| 28 | 27 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ℕ0s
→ (((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)) → ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) |
| 29 | 3, 6, 9, 12, 16, 28 | n0sind 28282 |
. . 3
⊢ (𝑁 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁))) |
| 30 | 29 | expd 415 |
. 2
⊢ (𝑁 ∈ ℕ0s
→ (𝐴 ∈ No → ( 0s <s 𝐴 → 0s <s (𝐴↑s𝑁)))) |
| 31 | 30 | 3imp21 1113 |
1
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)) |