MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsgt0 Structured version   Visualization version   GIF version

Theorem expsgt0 28379
Description: A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
expsgt0 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))

Proof of Theorem expsgt0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . 6 (𝑚 = 0s → (𝐴s𝑚) = (𝐴s 0s ))
21breq2d 5136 . . . . 5 (𝑚 = 0s → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s 0s )))
32imbi2d 340 . . . 4 (𝑚 = 0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))))
4 oveq2 7418 . . . . . 6 (𝑚 = 𝑛 → (𝐴s𝑚) = (𝐴s𝑛))
54breq2d 5136 . . . . 5 (𝑚 = 𝑛 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑛)))
65imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛))))
7 oveq2 7418 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (𝐴s𝑚) = (𝐴s(𝑛 +s 1s )))
87breq2d 5136 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s(𝑛 +s 1s ))))
98imbi2d 340 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
10 oveq2 7418 . . . . . 6 (𝑚 = 𝑁 → (𝐴s𝑚) = (𝐴s𝑁))
1110breq2d 5136 . . . . 5 (𝑚 = 𝑁 → ( 0s <s (𝐴s𝑚) ↔ 0s <s (𝐴s𝑁)))
1211imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑚)) ↔ ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))))
13 0slt1s 27798 . . . . . 6 0s <s 1s
14 exps0 28370 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
1513, 14breqtrrid 5162 . . . . 5 (𝐴 No → 0s <s (𝐴s 0s ))
1615adantr 480 . . . 4 ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s 0s ))
17 simp2l 1200 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝐴 No )
18 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 𝑛 ∈ ℕ0s)
19 expscl 28374 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s𝑛) ∈ No )
2017, 18, 19syl2anc 584 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s𝑛) ∈ No )
21 simp3 1138 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s𝑛))
22 simp2r 1201 . . . . . . . 8 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s 𝐴)
2320, 17, 21, 22mulsgt0d 28105 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s ((𝐴s𝑛) ·s 𝐴))
24 expsp1 28372 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕ0s) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2517, 18, 24syl2anc 584 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → (𝐴s(𝑛 +s 1s )) = ((𝐴s𝑛) ·s 𝐴))
2623, 25breqtrrd 5152 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝐴 No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴s𝑛)) → 0s <s (𝐴s(𝑛 +s 1s )))
27263exp 1119 . . . . 5 (𝑛 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → ( 0s <s (𝐴s𝑛) → 0s <s (𝐴s(𝑛 +s 1s )))))
2827a2d 29 . . . 4 (𝑛 ∈ ℕ0s → (((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑛)) → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s(𝑛 +s 1s )))))
293, 6, 9, 12, 16, 28n0sind 28282 . . 3 (𝑁 ∈ ℕ0s → ((𝐴 No ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁)))
3029expd 415 . 2 (𝑁 ∈ ℕ0s → (𝐴 No → ( 0s <s 𝐴 → 0s <s (𝐴s𝑁))))
31303imp21 1113 1 ((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410   No csur 27608   <s cslt 27609   0s c0s 27791   1s c1s 27792   +s cadds 27923   ·s cmuls 28066  0scnn0s 28263  scexps 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-seqs 28235  df-n0s 28265  df-nns 28266  df-zs 28324  df-exps 28356
This theorem is referenced by:  pw2gt0divsd  28385  pw2ge0divsd  28386  pw2cut  28392  zs12bday  28400
  Copyright terms: Public domain W3C validator