Step | Hyp | Ref
| Expression |
1 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s
)) |
2 | 1 | breq2d 5178 |
. . . . 5
⊢ (𝑚 = 0s → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s 0s
))) |
3 | 2 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 0s → (((𝐴 ∈
No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)))) |
4 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) |
5 | 4 | breq2d 5178 |
. . . . 5
⊢ (𝑚 = 𝑛 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑛))) |
6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)))) |
7 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s
))) |
8 | 7 | breq2d 5178 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s(𝑛 +s 1s
)))) |
9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) →
(((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) |
10 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) |
11 | 10 | breq2d 5178 |
. . . . 5
⊢ (𝑚 = 𝑁 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑁))) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)))) |
13 | | 0slt1s 27892 |
. . . . . 6
⊢
0s <s 1s |
14 | | exps0 28428 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴↑s 0s ) =
1s ) |
15 | 13, 14 | breqtrrid 5204 |
. . . . 5
⊢ (𝐴 ∈
No → 0s <s (𝐴↑s 0s
)) |
16 | 15 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)) |
17 | | simp2l 1199 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝐴 ∈ No
) |
18 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝑛 ∈
ℕ0s) |
19 | | expscl 28431 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s𝑛) ∈ No
) |
20 | 17, 18, 19 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s𝑛) ∈ No
) |
21 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s𝑛)) |
22 | | simp2r 1200 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
𝐴) |
23 | 20, 17, 21, 22 | mulsgt0d 28189 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
((𝐴↑s𝑛) ·s 𝐴)) |
24 | | expsp1 28430 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
25 | 17, 18, 24 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) |
26 | 23, 25 | breqtrrd 5194 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s(𝑛 +s 1s
))) |
27 | 26 | 3exp 1119 |
. . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 0s <s 𝐴) → ( 0s <s (𝐴↑s𝑛) → 0s <s
(𝐴↑s(𝑛 +s 1s
))))) |
28 | 27 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ℕ0s
→ (((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)) → ((𝐴 ∈ No
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) |
29 | 3, 6, 9, 12, 16, 28 | n0sind 28355 |
. . 3
⊢ (𝑁 ∈ ℕ0s
→ ((𝐴 ∈ No ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁))) |
30 | 29 | expd 415 |
. 2
⊢ (𝑁 ∈ ℕ0s
→ (𝐴 ∈ No → ( 0s <s 𝐴 → 0s <s (𝐴↑s𝑁)))) |
31 | 30 | 3imp21 1114 |
1
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)) |