| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . . . 6
⊢ (𝑚 = 0s → (𝐴↑s𝑚) = (𝐴↑s 0s
)) | 
| 2 | 1 | breq2d 5154 | . . . . 5
⊢ (𝑚 = 0s → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s 0s
))) | 
| 3 | 2 | imbi2d 340 | . . . 4
⊢ (𝑚 = 0s → (((𝐴 ∈ 
No  ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)))) | 
| 4 |  | oveq2 7440 | . . . . . 6
⊢ (𝑚 = 𝑛 → (𝐴↑s𝑚) = (𝐴↑s𝑛)) | 
| 5 | 4 | breq2d 5154 | . . . . 5
⊢ (𝑚 = 𝑛 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑛))) | 
| 6 | 5 | imbi2d 340 | . . . 4
⊢ (𝑚 = 𝑛 → (((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)))) | 
| 7 |  | oveq2 7440 | . . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴↑s𝑚) = (𝐴↑s(𝑛 +s 1s
))) | 
| 8 | 7 | breq2d 5154 | . . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (
0s <s (𝐴↑s𝑚) ↔ 0s <s (𝐴↑s(𝑛 +s 1s
)))) | 
| 9 | 8 | imbi2d 340 | . . . 4
⊢ (𝑚 = (𝑛 +s 1s ) →
(((𝐴 ∈  No  ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) | 
| 10 |  | oveq2 7440 | . . . . . 6
⊢ (𝑚 = 𝑁 → (𝐴↑s𝑚) = (𝐴↑s𝑁)) | 
| 11 | 10 | breq2d 5154 | . . . . 5
⊢ (𝑚 = 𝑁 → ( 0s <s (𝐴↑s𝑚) ↔ 0s <s
(𝐴↑s𝑁))) | 
| 12 | 11 | imbi2d 340 | . . . 4
⊢ (𝑚 = 𝑁 → (((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑚)) ↔ ((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)))) | 
| 13 |  | 0slt1s 27875 | . . . . . 6
⊢ 
0s <s 1s | 
| 14 |  | exps0 28411 | . . . . . 6
⊢ (𝐴 ∈ 
No  → (𝐴↑s 0s ) =
1s ) | 
| 15 | 13, 14 | breqtrrid 5180 | . . . . 5
⊢ (𝐴 ∈ 
No  → 0s <s (𝐴↑s 0s
)) | 
| 16 | 15 | adantr 480 | . . . 4
⊢ ((𝐴 ∈ 
No  ∧ 0s <s 𝐴) → 0s <s (𝐴↑s 0s
)) | 
| 17 |  | simp2l 1199 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝐴 ∈  No
) | 
| 18 |  | simp1 1136 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 𝑛 ∈
ℕ0s) | 
| 19 |  | expscl 28414 | . . . . . . . . 9
⊢ ((𝐴 ∈ 
No  ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s𝑛) ∈  No
) | 
| 20 | 17, 18, 19 | syl2anc 584 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s𝑛) ∈  No
) | 
| 21 |  | simp3 1138 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s𝑛)) | 
| 22 |  | simp2r 1200 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
𝐴) | 
| 23 | 20, 17, 21, 22 | mulsgt0d 28172 | . . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
((𝐴↑s𝑛) ·s 𝐴)) | 
| 24 |  | expsp1 28413 | . . . . . . . 8
⊢ ((𝐴 ∈ 
No  ∧ 𝑛 ∈
ℕ0s) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) | 
| 25 | 17, 18, 24 | syl2anc 584 | . . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → (𝐴↑s(𝑛 +s 1s )) = ((𝐴↑s𝑛) ·s 𝐴)) | 
| 26 | 23, 25 | breqtrrd 5170 | . . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝐴 ∈  No  ∧ 0s <s 𝐴) ∧ 0s <s (𝐴↑s𝑛)) → 0s <s
(𝐴↑s(𝑛 +s 1s
))) | 
| 27 | 26 | 3exp 1119 | . . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ((𝐴 ∈  No  ∧ 0s <s 𝐴) → ( 0s <s (𝐴↑s𝑛) → 0s <s
(𝐴↑s(𝑛 +s 1s
))))) | 
| 28 | 27 | a2d 29 | . . . 4
⊢ (𝑛 ∈ ℕ0s
→ (((𝐴 ∈  No  ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑛)) → ((𝐴 ∈  No 
∧ 0s <s 𝐴) → 0s <s (𝐴↑s(𝑛 +s 1s
))))) | 
| 29 | 3, 6, 9, 12, 16, 28 | n0sind 28338 | . . 3
⊢ (𝑁 ∈ ℕ0s
→ ((𝐴 ∈  No  ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁))) | 
| 30 | 29 | expd 415 | . 2
⊢ (𝑁 ∈ ℕ0s
→ (𝐴 ∈  No  → ( 0s <s 𝐴 → 0s <s (𝐴↑s𝑁)))) | 
| 31 | 30 | 3imp21 1113 | 1
⊢ ((𝐴 ∈ 
No  ∧ 𝑁 ∈
ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)) |