| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = 0s →
(2s↑s𝑚) = (2s↑s
0s )) |
| 2 | | 2sno 28357 |
. . . . . . 7
⊢
2s ∈ No |
| 3 | | exps0 28365 |
. . . . . . 7
⊢
(2s ∈ No →
(2s↑s 0s ) = 1s
) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . 6
⊢
(2s↑s 0s ) =
1s |
| 5 | 1, 4 | eqtrdi 2786 |
. . . . 5
⊢ (𝑚 = 0s →
(2s↑s𝑚) = 1s ) |
| 6 | 5 | oveq1d 7420 |
. . . 4
⊢ (𝑚 = 0s →
((2s↑s𝑚) ·s 𝑥) = ( 1s ·s
𝑥)) |
| 7 | 6 | eqeq1d 2737 |
. . 3
⊢ (𝑚 = 0s →
(((2s↑s𝑚) ·s 𝑥) = 1s ↔ ( 1s
·s 𝑥) =
1s )) |
| 8 | 7 | rexbidv 3164 |
. 2
⊢ (𝑚 = 0s →
(∃𝑥 ∈ No ((2s↑s𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 ∈
No ( 1s ·s 𝑥) = 1s )) |
| 9 | | oveq2 7413 |
. . . . 5
⊢ (𝑚 = 𝑛 → (2s↑s𝑚) =
(2s↑s𝑛)) |
| 10 | 9 | oveq1d 7420 |
. . . 4
⊢ (𝑚 = 𝑛 →
((2s↑s𝑚) ·s 𝑥) = ((2s↑s𝑛) ·s 𝑥)) |
| 11 | 10 | eqeq1d 2737 |
. . 3
⊢ (𝑚 = 𝑛 →
(((2s↑s𝑚) ·s 𝑥) = 1s ↔
((2s↑s𝑛) ·s 𝑥) = 1s )) |
| 12 | 11 | rexbidv 3164 |
. 2
⊢ (𝑚 = 𝑛 → (∃𝑥 ∈ No
((2s↑s𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 ∈
No ((2s↑s𝑛) ·s 𝑥) = 1s )) |
| 13 | | oveq2 7413 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s𝑚) = (2s↑s(𝑛 +s 1s
))) |
| 14 | 13 | oveq1d 7420 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) →
((2s↑s𝑚) ·s 𝑥) = ((2s↑s(𝑛 +s 1s ))
·s 𝑥)) |
| 15 | 14 | eqeq1d 2737 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) →
(((2s↑s𝑚) ·s 𝑥) = 1s ↔
((2s↑s(𝑛 +s 1s ))
·s 𝑥) =
1s )) |
| 16 | 15 | rexbidv 3164 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) →
(∃𝑥 ∈ No ((2s↑s𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 ∈
No ((2s↑s(𝑛 +s 1s ))
·s 𝑥) =
1s )) |
| 17 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝑦 →
((2s↑s(𝑛 +s 1s ))
·s 𝑥) =
((2s↑s(𝑛 +s 1s ))
·s 𝑦)) |
| 18 | 17 | eqeq1d 2737 |
. . . 4
⊢ (𝑥 = 𝑦 →
(((2s↑s(𝑛 +s 1s ))
·s 𝑥) =
1s ↔ ((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s )) |
| 19 | 18 | cbvrexvw 3221 |
. . 3
⊢
(∃𝑥 ∈
No ((2s↑s(𝑛 +s 1s ))
·s 𝑥) =
1s ↔ ∃𝑦 ∈ No
((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s ) |
| 20 | 16, 19 | bitrdi 287 |
. 2
⊢ (𝑚 = (𝑛 +s 1s ) →
(∃𝑥 ∈ No ((2s↑s𝑚) ·s 𝑥) = 1s ↔ ∃𝑦 ∈
No ((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s )) |
| 21 | | oveq2 7413 |
. . . . 5
⊢ (𝑚 = 𝑁 →
(2s↑s𝑚) = (2s↑s𝑁)) |
| 22 | 21 | oveq1d 7420 |
. . . 4
⊢ (𝑚 = 𝑁 →
((2s↑s𝑚) ·s 𝑥) = ((2s↑s𝑁) ·s 𝑥)) |
| 23 | 22 | eqeq1d 2737 |
. . 3
⊢ (𝑚 = 𝑁 →
(((2s↑s𝑚) ·s 𝑥) = 1s ↔
((2s↑s𝑁) ·s 𝑥) = 1s )) |
| 24 | 23 | rexbidv 3164 |
. 2
⊢ (𝑚 = 𝑁 → (∃𝑥 ∈ No
((2s↑s𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 ∈
No ((2s↑s𝑁) ·s 𝑥) = 1s )) |
| 25 | | 1sno 27791 |
. . 3
⊢
1s ∈ No |
| 26 | | mulsrid 28068 |
. . . 4
⊢ (
1s ∈ No → ( 1s
·s 1s ) = 1s ) |
| 27 | 25, 26 | ax-mp 5 |
. . 3
⊢ (
1s ·s 1s ) =
1s |
| 28 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 1s → (
1s ·s 𝑥) = ( 1s ·s
1s )) |
| 29 | 28 | eqeq1d 2737 |
. . . 4
⊢ (𝑥 = 1s → ((
1s ·s 𝑥) = 1s ↔ ( 1s
·s 1s ) = 1s )) |
| 30 | 29 | rspcev 3601 |
. . 3
⊢ ((
1s ∈ No ∧ ( 1s
·s 1s ) = 1s ) → ∃𝑥 ∈
No ( 1s ·s 𝑥) = 1s ) |
| 31 | 25, 27, 30 | mp2an 692 |
. 2
⊢
∃𝑥 ∈
No ( 1s ·s 𝑥) =
1s |
| 32 | | oveq2 7413 |
. . . . 5
⊢ (𝑦 = (𝑥 ·s ({ 0s } |s {
1s })) → ((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
((2s↑s(𝑛 +s 1s ))
·s (𝑥
·s ({ 0s } |s { 1s
})))) |
| 33 | 32 | eqeq1d 2737 |
. . . 4
⊢ (𝑦 = (𝑥 ·s ({ 0s } |s {
1s })) → (((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s ↔ ((2s↑s(𝑛 +s 1s ))
·s (𝑥
·s ({ 0s } |s { 1s }))) = 1s
)) |
| 34 | | simprl 770 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
𝑥 ∈ No ) |
| 35 | | 0sno 27790 |
. . . . . . . 8
⊢
0s ∈ No |
| 36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
0s ∈ No ) |
| 37 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
1s ∈ No ) |
| 38 | | 0slt1s 27793 |
. . . . . . . 8
⊢
0s <s 1s |
| 39 | 38 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
0s <s 1s ) |
| 40 | 36, 37, 39 | ssltsn 27756 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) → {
0s } <<s { 1s }) |
| 41 | 40 | scutcld 27767 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) → ({
0s } |s { 1s }) ∈ No
) |
| 42 | 34, 41 | mulscld 28090 |
. . . 4
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(𝑥 ·s ({
0s } |s { 1s })) ∈ No
) |
| 43 | | expsp1 28367 |
. . . . . . . 8
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s)
→ (2s↑s(𝑛 +s 1s )) =
((2s↑s𝑛) ·s
2s)) |
| 44 | 2, 43 | mpan 690 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s(𝑛 +s 1s )) =
((2s↑s𝑛) ·s
2s)) |
| 45 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(2s↑s(𝑛 +s 1s )) =
((2s↑s𝑛) ·s
2s)) |
| 46 | 45 | oveq1d 7420 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
((2s↑s(𝑛 +s 1s ))
·s (𝑥
·s ({ 0s } |s { 1s }))) =
(((2s↑s𝑛) ·s 2s)
·s (𝑥
·s ({ 0s } |s { 1s
})))) |
| 47 | | expscl 28369 |
. . . . . . . 8
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s)
→ (2s↑s𝑛) ∈ No
) |
| 48 | 2, 47 | mpan 690 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s𝑛) ∈ No
) |
| 49 | 48 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(2s↑s𝑛) ∈ No
) |
| 50 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
2s ∈ No ) |
| 51 | 49, 50, 34, 41 | muls4d 28123 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(((2s↑s𝑛) ·s 2s)
·s (𝑥
·s ({ 0s } |s { 1s }))) =
(((2s↑s𝑛) ·s 𝑥) ·s (2s
·s ({ 0s } |s { 1s
})))) |
| 52 | | simprr 772 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
((2s↑s𝑛) ·s 𝑥) = 1s ) |
| 53 | | twocut 28361 |
. . . . . . . 8
⊢
(2s ·s ({ 0s } |s {
1s })) = 1s |
| 54 | 53 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(2s ·s ({ 0s } |s { 1s })) =
1s ) |
| 55 | 52, 54 | oveq12d 7423 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(((2s↑s𝑛) ·s 𝑥) ·s (2s
·s ({ 0s } |s { 1s }))) = (
1s ·s 1s )) |
| 56 | 55, 27 | eqtrdi 2786 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
(((2s↑s𝑛) ·s 𝑥) ·s (2s
·s ({ 0s } |s { 1s }))) = 1s
) |
| 57 | 46, 51, 56 | 3eqtrd 2774 |
. . . 4
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
((2s↑s(𝑛 +s 1s ))
·s (𝑥
·s ({ 0s } |s { 1s }))) = 1s
) |
| 58 | 33, 42, 57 | rspcedvdw 3604 |
. . 3
⊢ ((𝑛 ∈ ℕ0s
∧ (𝑥 ∈ No ∧ ((2s↑s𝑛) ·s 𝑥) = 1s )) →
∃𝑦 ∈ No ((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s ) |
| 59 | 58 | rexlimdvaa 3142 |
. 2
⊢ (𝑛 ∈ ℕ0s
→ (∃𝑥 ∈
No ((2s↑s𝑛) ·s 𝑥) = 1s →
∃𝑦 ∈ No ((2s↑s(𝑛 +s 1s ))
·s 𝑦) =
1s )) |
| 60 | 8, 12, 20, 24, 31, 59 | n0sind 28277 |
1
⊢ (𝑁 ∈ ℕ0s
→ ∃𝑥 ∈
No ((2s↑s𝑁) ·s 𝑥) = 1s
) |