MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2recs Structured version   Visualization version   GIF version

Theorem pw2recs 28330
Description: Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.)
Assertion
Ref Expression
pw2recs (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝑁

Proof of Theorem pw2recs
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . 6 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28312 . . . . . . 7 2s No
3 exps0 28320 . . . . . . 7 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . 6 (2ss 0s ) = 1s
51, 4eqtrdi 2781 . . . . 5 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq1d 7405 . . . 4 (𝑚 = 0s → ((2ss𝑚) ·s 𝑥) = ( 1s ·s 𝑥))
76eqeq1d 2732 . . 3 (𝑚 = 0s → (((2ss𝑚) ·s 𝑥) = 1s ↔ ( 1s ·s 𝑥) = 1s ))
87rexbidv 3158 . 2 (𝑚 = 0s → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ( 1s ·s 𝑥) = 1s ))
9 oveq2 7398 . . . . 5 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
109oveq1d 7405 . . . 4 (𝑚 = 𝑛 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑛) ·s 𝑥))
1110eqeq1d 2732 . . 3 (𝑚 = 𝑛 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑛) ·s 𝑥) = 1s ))
1211rexbidv 3158 . 2 (𝑚 = 𝑛 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s ))
13 oveq2 7398 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1413oveq1d 7405 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ((2ss𝑚) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑥))
1514eqeq1d 2732 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
1615rexbidv 3158 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
17 oveq2 7398 . . . . 5 (𝑥 = 𝑦 → ((2ss(𝑛 +s 1s )) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑦))
1817eqeq1d 2732 . . . 4 (𝑥 = 𝑦 → (((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
1918cbvrexvw 3217 . . 3 (∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
2016, 19bitrdi 287 . 2 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
21 oveq2 7398 . . . . 5 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
2221oveq1d 7405 . . . 4 (𝑚 = 𝑁 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑁) ·s 𝑥))
2322eqeq1d 2732 . . 3 (𝑚 = 𝑁 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑁) ·s 𝑥) = 1s ))
2423rexbidv 3158 . 2 (𝑚 = 𝑁 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s ))
25 1sno 27746 . . 3 1s No
26 mulsrid 28023 . . . 4 ( 1s No → ( 1s ·s 1s ) = 1s )
2725, 26ax-mp 5 . . 3 ( 1s ·s 1s ) = 1s
28 oveq2 7398 . . . . 5 (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s ))
2928eqeq1d 2732 . . . 4 (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s ))
3029rspcev 3591 . . 3 (( 1s No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 No ( 1s ·s 𝑥) = 1s )
3125, 27, 30mp2an 692 . 2 𝑥 No ( 1s ·s 𝑥) = 1s
32 oveq2 7398 . . . . 5 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → ((2ss(𝑛 +s 1s )) ·s 𝑦) = ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
3332eqeq1d 2732 . . . 4 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → (((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s ))
34 simprl 770 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 𝑥 No )
35 0sno 27745 . . . . . . . 8 0s No
3635a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s No )
3725a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 1s No )
38 0slt1s 27748 . . . . . . . 8 0s <s 1s
3938a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s <s 1s )
4036, 37, 39ssltsn 27711 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → { 0s } <<s { 1s })
4140scutcld 27722 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ({ 0s } |s { 1s }) ∈ No )
4234, 41mulscld 28045 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (𝑥 ·s ({ 0s } |s { 1s })) ∈ No )
43 expsp1 28322 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
442, 43mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4544adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4645oveq1d 7405 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
47 expscl 28324 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
482, 47mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
4948adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss𝑛) ∈ No )
502a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 2s No )
5149, 50, 34, 41muls4d 28078 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))))
52 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss𝑛) ·s 𝑥) = 1s )
53 twocut 28316 . . . . . . . 8 (2s ·s ({ 0s } |s { 1s })) = 1s
5453a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2s ·s ({ 0s } |s { 1s })) = 1s )
5552, 54oveq12d 7408 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = ( 1s ·s 1s ))
5655, 27eqtrdi 2781 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = 1s )
5746, 51, 563eqtrd 2769 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s )
5833, 42, 57rspcedvdw 3594 . . 3 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
5958rexlimdvaa 3136 . 2 (𝑛 ∈ ℕ0s → (∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
608, 12, 20, 24, 31, 59n0sind 28232 1 (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {csn 4592   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   |s cscut 27701   0s c0s 27741   1s c1s 27742   +s cadds 27873   ·s cmuls 28016  0scnn0s 28213  2sc2s 28303  scexps 28305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-2s 28304  df-exps 28306
This theorem is referenced by:  pw2divscld  28331  pw2divsmuld  28332  pw2divscan2d  28334
  Copyright terms: Public domain W3C validator