MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2recs Structured version   Visualization version   GIF version

Theorem pw2recs 28375
Description: Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.)
Assertion
Ref Expression
pw2recs (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝑁

Proof of Theorem pw2recs
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . 6 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28357 . . . . . . 7 2s No
3 exps0 28365 . . . . . . 7 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . 6 (2ss 0s ) = 1s
51, 4eqtrdi 2786 . . . . 5 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq1d 7420 . . . 4 (𝑚 = 0s → ((2ss𝑚) ·s 𝑥) = ( 1s ·s 𝑥))
76eqeq1d 2737 . . 3 (𝑚 = 0s → (((2ss𝑚) ·s 𝑥) = 1s ↔ ( 1s ·s 𝑥) = 1s ))
87rexbidv 3164 . 2 (𝑚 = 0s → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ( 1s ·s 𝑥) = 1s ))
9 oveq2 7413 . . . . 5 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
109oveq1d 7420 . . . 4 (𝑚 = 𝑛 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑛) ·s 𝑥))
1110eqeq1d 2737 . . 3 (𝑚 = 𝑛 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑛) ·s 𝑥) = 1s ))
1211rexbidv 3164 . 2 (𝑚 = 𝑛 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s ))
13 oveq2 7413 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1413oveq1d 7420 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ((2ss𝑚) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑥))
1514eqeq1d 2737 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
1615rexbidv 3164 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
17 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → ((2ss(𝑛 +s 1s )) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑦))
1817eqeq1d 2737 . . . 4 (𝑥 = 𝑦 → (((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
1918cbvrexvw 3221 . . 3 (∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
2016, 19bitrdi 287 . 2 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
21 oveq2 7413 . . . . 5 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
2221oveq1d 7420 . . . 4 (𝑚 = 𝑁 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑁) ·s 𝑥))
2322eqeq1d 2737 . . 3 (𝑚 = 𝑁 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑁) ·s 𝑥) = 1s ))
2423rexbidv 3164 . 2 (𝑚 = 𝑁 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s ))
25 1sno 27791 . . 3 1s No
26 mulsrid 28068 . . . 4 ( 1s No → ( 1s ·s 1s ) = 1s )
2725, 26ax-mp 5 . . 3 ( 1s ·s 1s ) = 1s
28 oveq2 7413 . . . . 5 (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s ))
2928eqeq1d 2737 . . . 4 (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s ))
3029rspcev 3601 . . 3 (( 1s No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 No ( 1s ·s 𝑥) = 1s )
3125, 27, 30mp2an 692 . 2 𝑥 No ( 1s ·s 𝑥) = 1s
32 oveq2 7413 . . . . 5 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → ((2ss(𝑛 +s 1s )) ·s 𝑦) = ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
3332eqeq1d 2737 . . . 4 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → (((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s ))
34 simprl 770 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 𝑥 No )
35 0sno 27790 . . . . . . . 8 0s No
3635a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s No )
3725a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 1s No )
38 0slt1s 27793 . . . . . . . 8 0s <s 1s
3938a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s <s 1s )
4036, 37, 39ssltsn 27756 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → { 0s } <<s { 1s })
4140scutcld 27767 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ({ 0s } |s { 1s }) ∈ No )
4234, 41mulscld 28090 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (𝑥 ·s ({ 0s } |s { 1s })) ∈ No )
43 expsp1 28367 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
442, 43mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4544adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4645oveq1d 7420 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
47 expscl 28369 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
482, 47mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
4948adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss𝑛) ∈ No )
502a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 2s No )
5149, 50, 34, 41muls4d 28123 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))))
52 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss𝑛) ·s 𝑥) = 1s )
53 twocut 28361 . . . . . . . 8 (2s ·s ({ 0s } |s { 1s })) = 1s
5453a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2s ·s ({ 0s } |s { 1s })) = 1s )
5552, 54oveq12d 7423 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = ( 1s ·s 1s ))
5655, 27eqtrdi 2786 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = 1s )
5746, 51, 563eqtrd 2774 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s )
5833, 42, 57rspcedvdw 3604 . . 3 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
5958rexlimdvaa 3142 . 2 (𝑛 ∈ ℕ0s → (∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
608, 12, 20, 24, 31, 59n0sind 28277 1 (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  {csn 4601   class class class wbr 5119  (class class class)co 7405   No csur 27603   <s cslt 27604   |s cscut 27746   0s c0s 27786   1s c1s 27787   +s cadds 27918   ·s cmuls 28061  0scnn0s 28258  2sc2s 28348  scexps 28350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-seqs 28230  df-n0s 28260  df-nns 28261  df-zs 28319  df-2s 28349  df-exps 28351
This theorem is referenced by:  pw2divscld  28376  pw2divsmuld  28377  pw2divscan2d  28379
  Copyright terms: Public domain W3C validator