MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2recs Structured version   Visualization version   GIF version

Theorem pw2recs 28361
Description: Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.)
Assertion
Ref Expression
pw2recs (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝑁

Proof of Theorem pw2recs
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . 6 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28342 . . . . . . 7 2s No
3 exps0 28350 . . . . . . 7 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . 6 (2ss 0s ) = 1s
51, 4eqtrdi 2782 . . . . 5 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq1d 7361 . . . 4 (𝑚 = 0s → ((2ss𝑚) ·s 𝑥) = ( 1s ·s 𝑥))
76eqeq1d 2733 . . 3 (𝑚 = 0s → (((2ss𝑚) ·s 𝑥) = 1s ↔ ( 1s ·s 𝑥) = 1s ))
87rexbidv 3156 . 2 (𝑚 = 0s → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ( 1s ·s 𝑥) = 1s ))
9 oveq2 7354 . . . . 5 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
109oveq1d 7361 . . . 4 (𝑚 = 𝑛 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑛) ·s 𝑥))
1110eqeq1d 2733 . . 3 (𝑚 = 𝑛 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑛) ·s 𝑥) = 1s ))
1211rexbidv 3156 . 2 (𝑚 = 𝑛 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s ))
13 oveq2 7354 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
1413oveq1d 7361 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ((2ss𝑚) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑥))
1514eqeq1d 2733 . . . 4 (𝑚 = (𝑛 +s 1s ) → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
1615rexbidv 3156 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ))
17 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → ((2ss(𝑛 +s 1s )) ·s 𝑥) = ((2ss(𝑛 +s 1s )) ·s 𝑦))
1817eqeq1d 2733 . . . 4 (𝑥 = 𝑦 → (((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
1918cbvrexvw 3211 . . 3 (∃𝑥 No ((2ss(𝑛 +s 1s )) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
2016, 19bitrdi 287 . 2 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
21 oveq2 7354 . . . . 5 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
2221oveq1d 7361 . . . 4 (𝑚 = 𝑁 → ((2ss𝑚) ·s 𝑥) = ((2ss𝑁) ·s 𝑥))
2322eqeq1d 2733 . . 3 (𝑚 = 𝑁 → (((2ss𝑚) ·s 𝑥) = 1s ↔ ((2ss𝑁) ·s 𝑥) = 1s ))
2423rexbidv 3156 . 2 (𝑚 = 𝑁 → (∃𝑥 No ((2ss𝑚) ·s 𝑥) = 1s ↔ ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s ))
25 1sno 27771 . . 3 1s No
26 mulsrid 28052 . . . 4 ( 1s No → ( 1s ·s 1s ) = 1s )
2725, 26ax-mp 5 . . 3 ( 1s ·s 1s ) = 1s
28 oveq2 7354 . . . . 5 (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s ))
2928eqeq1d 2733 . . . 4 (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s ))
3029rspcev 3572 . . 3 (( 1s No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 No ( 1s ·s 𝑥) = 1s )
3125, 27, 30mp2an 692 . 2 𝑥 No ( 1s ·s 𝑥) = 1s
32 oveq2 7354 . . . . 5 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → ((2ss(𝑛 +s 1s )) ·s 𝑦) = ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
3332eqeq1d 2733 . . . 4 (𝑦 = (𝑥 ·s ({ 0s } |s { 1s })) → (((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ↔ ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s ))
34 simprl 770 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 𝑥 No )
35 0sno 27770 . . . . . . . 8 0s No
3635a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s No )
3725a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 1s No )
38 0slt1s 27773 . . . . . . . 8 0s <s 1s
3938a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 0s <s 1s )
4036, 37, 39ssltsn 27733 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → { 0s } <<s { 1s })
4140scutcld 27744 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ({ 0s } |s { 1s }) ∈ No )
4234, 41mulscld 28074 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (𝑥 ·s ({ 0s } |s { 1s })) ∈ No )
43 expsp1 28352 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
442, 43mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4544adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
4645oveq1d 7361 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))))
47 expscl 28354 . . . . . . . 8 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
482, 47mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
4948adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2ss𝑛) ∈ No )
502a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → 2s No )
5149, 50, 34, 41muls4d 28107 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 2s) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))))
52 simprr 772 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss𝑛) ·s 𝑥) = 1s )
53 twocut 28346 . . . . . . . 8 (2s ·s ({ 0s } |s { 1s })) = 1s
5453a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (2s ·s ({ 0s } |s { 1s })) = 1s )
5552, 54oveq12d 7364 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = ( 1s ·s 1s ))
5655, 27eqtrdi 2782 . . . . 5 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → (((2ss𝑛) ·s 𝑥) ·s (2s ·s ({ 0s } |s { 1s }))) = 1s )
5746, 51, 563eqtrd 2770 . . . 4 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ((2ss(𝑛 +s 1s )) ·s (𝑥 ·s ({ 0s } |s { 1s }))) = 1s )
5833, 42, 57rspcedvdw 3575 . . 3 ((𝑛 ∈ ℕ0s ∧ (𝑥 No ∧ ((2ss𝑛) ·s 𝑥) = 1s )) → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s )
5958rexlimdvaa 3134 . 2 (𝑛 ∈ ℕ0s → (∃𝑥 No ((2ss𝑛) ·s 𝑥) = 1s → ∃𝑦 No ((2ss(𝑛 +s 1s )) ·s 𝑦) = 1s ))
608, 12, 20, 24, 31, 59n0sind 28261 1 (𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {csn 4573   class class class wbr 5089  (class class class)co 7346   No csur 27578   <s cslt 27579   |s cscut 27722   0s c0s 27766   1s c1s 27767   +s cadds 27902   ·s cmuls 28045  0scnn0s 28242  2sc2s 28333  scexps 28335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-seqs 28214  df-n0s 28244  df-nns 28245  df-zs 28303  df-2s 28334  df-exps 28336
This theorem is referenced by:  pw2divscld  28362  pw2divsmuld  28363  pw2divscan2d  28365  pw2divsassd  28366  pw2sltdivmuld  28373  pw2sltmuldiv2d  28374  zs12zodd  28392
  Copyright terms: Public domain W3C validator