Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Visualization version   GIF version

Theorem subfacval3 31778
Description: Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval3 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 11655 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 derang.d . . . . . . . . 9 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . . . . . . 9 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacf 31764 . . . . . . . 8 𝑆:ℕ0⟶ℕ0
54ffvelrni 6624 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
76nn0zd 11837 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℤ)
87zred 11839 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℝ)
9 faccl 13394 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
101, 9syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1110nnred 11396 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
12 epr 15349 . . . . . 6 e ∈ ℝ+
13 rerpdivcl 12174 . . . . . 6 (((!‘𝑁) ∈ ℝ ∧ e ∈ ℝ+) → ((!‘𝑁) / e) ∈ ℝ)
1411, 12, 13sylancl 580 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℝ)
15 halfre 11601 . . . . 5 (1 / 2) ∈ ℝ
16 readdcl 10357 . . . . 5 ((((!‘𝑁) / e) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
1714, 15, 16sylancl 580 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
18 elnn1uz2 12077 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
19 fveq2 6448 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (!‘𝑁) = (!‘1))
20 fac1 13388 . . . . . . . . . . . . . . . 16 (!‘1) = 1
2119, 20syl6eq 2830 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (!‘𝑁) = 1)
2221oveq1d 6939 . . . . . . . . . . . . . 14 (𝑁 = 1 → ((!‘𝑁) / e) = (1 / e))
23 fveq2 6448 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (𝑆𝑁) = (𝑆‘1))
242, 3subfac1 31767 . . . . . . . . . . . . . . 15 (𝑆‘1) = 0
2523, 24syl6eq 2830 . . . . . . . . . . . . . 14 (𝑁 = 1 → (𝑆𝑁) = 0)
2622, 25oveq12d 6942 . . . . . . . . . . . . 13 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = ((1 / e) − 0))
27 rpreccl 12170 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → (1 / e) ∈ ℝ+)
2812, 27ax-mp 5 . . . . . . . . . . . . . . . 16 (1 / e) ∈ ℝ+
29 rpre 12150 . . . . . . . . . . . . . . . 16 ((1 / e) ∈ ℝ+ → (1 / e) ∈ ℝ)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (1 / e) ∈ ℝ
3130recni 10393 . . . . . . . . . . . . . 14 (1 / e) ∈ ℂ
3231subid1i 10697 . . . . . . . . . . . . 13 ((1 / e) − 0) = (1 / e)
3326, 32syl6eq 2830 . . . . . . . . . . . 12 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = (1 / e))
3433fveq2d 6452 . . . . . . . . . . 11 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘(1 / e)))
35 rpge0 12157 . . . . . . . . . . . . 13 ((1 / e) ∈ ℝ+ → 0 ≤ (1 / e))
3628, 35ax-mp 5 . . . . . . . . . . . 12 0 ≤ (1 / e)
37 absid 14450 . . . . . . . . . . . 12 (((1 / e) ∈ ℝ ∧ 0 ≤ (1 / e)) → (abs‘(1 / e)) = (1 / e))
3830, 36, 37mp2an 682 . . . . . . . . . . 11 (abs‘(1 / e)) = (1 / e)
3934, 38syl6eq 2830 . . . . . . . . . 10 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (1 / e))
40 egt2lt3 15347 . . . . . . . . . . . 12 (2 < e ∧ e < 3)
4140simpli 478 . . . . . . . . . . 11 2 < e
42 2re 11454 . . . . . . . . . . . 12 2 ∈ ℝ
43 ere 15230 . . . . . . . . . . . 12 e ∈ ℝ
44 2pos 11490 . . . . . . . . . . . 12 0 < 2
45 epos 15348 . . . . . . . . . . . 12 0 < e
4642, 43, 44, 45ltrecii 11297 . . . . . . . . . . 11 (2 < e ↔ (1 / e) < (1 / 2))
4741, 46mpbi 222 . . . . . . . . . 10 (1 / e) < (1 / 2)
4839, 47syl6eqbr 4927 . . . . . . . . 9 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
49 eluz2nn 12037 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5014, 8resubcld 10806 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℝ)
5150recnd 10407 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5249, 51syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5352abscld 14590 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
5449nnrecred 11431 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ∈ ℝ)
5515a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 2) ∈ ℝ)
562, 3subfaclim 31777 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
5749, 56syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
58 eluzle 12010 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
59 nnre 11387 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
60 nngt0 11412 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 < 𝑁)
61 lerec 11263 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6242, 44, 61mpanl12 692 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6359, 60, 62syl2anc 579 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6449, 63syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6558, 64mpbid 224 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ≤ (1 / 2))
6653, 54, 55, 57, 65ltletrd 10538 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6748, 66jaoi 846 . . . . . . . 8 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6818, 67sylbi 209 . . . . . . 7 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6915a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 2) ∈ ℝ)
7014, 8, 69absdifltd 14587 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2) ↔ (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))))
7168, 70mpbid 224 . . . . . 6 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2))))
7271simpld 490 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e))
738, 69, 14ltsubaddd 10974 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ↔ (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2))))
7472, 73mpbid 224 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2)))
758, 17, 74ltled 10526 . . 3 (𝑁 ∈ ℕ → (𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)))
76 readdcl 10357 . . . . . 6 (((𝑆𝑁) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
778, 15, 76sylancl 580 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
7871simprd 491 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))
7914, 77, 69, 78ltadd1dd 10989 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < (((𝑆𝑁) + (1 / 2)) + (1 / 2)))
808recnd 10407 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
8169recnd 10407 . . . . . 6 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
8280, 81, 81addassd 10401 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + ((1 / 2) + (1 / 2))))
83 ax-1cn 10332 . . . . . . 7 1 ∈ ℂ
84 2halves 11615 . . . . . . 7 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8583, 84ax-mp 5 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
8685oveq2i 6935 . . . . 5 ((𝑆𝑁) + ((1 / 2) + (1 / 2))) = ((𝑆𝑁) + 1)
8782, 86syl6eq 2830 . . . 4 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + 1))
8879, 87breqtrd 4914 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))
89 flbi 12941 . . . 4 (((((!‘𝑁) / e) + (1 / 2)) ∈ ℝ ∧ (𝑆𝑁) ∈ ℤ) → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9017, 7, 89syl2anc 579 . . 3 (𝑁 ∈ ℕ → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9175, 88, 90mpbir2and 703 . 2 (𝑁 ∈ ℕ → (⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁))
9291eqcomd 2784 1 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  {cab 2763  wne 2969  wral 3090   class class class wbr 4888  cmpt 4967  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  Fincfn 8243  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   < clt 10413  cle 10414  cmin 10608   / cdiv 11035  cn 11379  2c2 11435  3c3 11436  0cn0 11647  cz 11733  cuz 11997  +crp 12142  ...cfz 12648  cfl 12915  !cfa 13384  chash 13441  abscabs 14387  eceu 15204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-n0 11648  df-xnn0 11720  df-z 11734  df-uz 11998  df-q 12101  df-rp 12143  df-ico 12498  df-fz 12649  df-fzo 12790  df-fl 12917  df-seq 13125  df-exp 13184  df-fac 13385  df-bc 13414  df-hash 13442  df-shft 14220  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-limsup 14619  df-clim 14636  df-rlim 14637  df-sum 14834  df-ef 15209  df-e 15210
This theorem is referenced by:  derangfmla  31779
  Copyright terms: Public domain W3C validator