Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Visualization version   GIF version

Theorem subfacval3 35254
Description: Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval3 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 12395 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 derang.d . . . . . . . . 9 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . . . . . . 9 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacf 35240 . . . . . . . 8 𝑆:ℕ0⟶ℕ0
54ffvelcdmi 7022 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
76nn0zd 12500 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℤ)
87zred 12583 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℝ)
9 faccl 14192 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
101, 9syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1110nnred 12147 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
12 epr 16119 . . . . . 6 e ∈ ℝ+
13 rerpdivcl 12924 . . . . . 6 (((!‘𝑁) ∈ ℝ ∧ e ∈ ℝ+) → ((!‘𝑁) / e) ∈ ℝ)
1411, 12, 13sylancl 586 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℝ)
15 halfre 12341 . . . . 5 (1 / 2) ∈ ℝ
16 readdcl 11096 . . . . 5 ((((!‘𝑁) / e) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
1714, 15, 16sylancl 586 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
18 elnn1uz2 12825 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
19 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (!‘𝑁) = (!‘1))
20 fac1 14186 . . . . . . . . . . . . . . . 16 (!‘1) = 1
2119, 20eqtrdi 2784 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (!‘𝑁) = 1)
2221oveq1d 7367 . . . . . . . . . . . . . 14 (𝑁 = 1 → ((!‘𝑁) / e) = (1 / e))
23 fveq2 6828 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (𝑆𝑁) = (𝑆‘1))
242, 3subfac1 35243 . . . . . . . . . . . . . . 15 (𝑆‘1) = 0
2523, 24eqtrdi 2784 . . . . . . . . . . . . . 14 (𝑁 = 1 → (𝑆𝑁) = 0)
2622, 25oveq12d 7370 . . . . . . . . . . . . 13 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = ((1 / e) − 0))
27 rpreccl 12920 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → (1 / e) ∈ ℝ+)
2812, 27ax-mp 5 . . . . . . . . . . . . . . . 16 (1 / e) ∈ ℝ+
29 rpre 12901 . . . . . . . . . . . . . . . 16 ((1 / e) ∈ ℝ+ → (1 / e) ∈ ℝ)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (1 / e) ∈ ℝ
3130recni 11133 . . . . . . . . . . . . . 14 (1 / e) ∈ ℂ
3231subid1i 11440 . . . . . . . . . . . . 13 ((1 / e) − 0) = (1 / e)
3326, 32eqtrdi 2784 . . . . . . . . . . . 12 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = (1 / e))
3433fveq2d 6832 . . . . . . . . . . 11 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘(1 / e)))
35 rpge0 12906 . . . . . . . . . . . . 13 ((1 / e) ∈ ℝ+ → 0 ≤ (1 / e))
3628, 35ax-mp 5 . . . . . . . . . . . 12 0 ≤ (1 / e)
37 absid 15205 . . . . . . . . . . . 12 (((1 / e) ∈ ℝ ∧ 0 ≤ (1 / e)) → (abs‘(1 / e)) = (1 / e))
3830, 36, 37mp2an 692 . . . . . . . . . . 11 (abs‘(1 / e)) = (1 / e)
3934, 38eqtrdi 2784 . . . . . . . . . 10 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (1 / e))
40 egt2lt3 16117 . . . . . . . . . . . 12 (2 < e ∧ e < 3)
4140simpli 483 . . . . . . . . . . 11 2 < e
42 2re 12206 . . . . . . . . . . . 12 2 ∈ ℝ
43 ere 15998 . . . . . . . . . . . 12 e ∈ ℝ
44 2pos 12235 . . . . . . . . . . . 12 0 < 2
45 epos 16118 . . . . . . . . . . . 12 0 < e
4642, 43, 44, 45ltrecii 12045 . . . . . . . . . . 11 (2 < e ↔ (1 / e) < (1 / 2))
4741, 46mpbi 230 . . . . . . . . . 10 (1 / e) < (1 / 2)
4839, 47eqbrtrdi 5132 . . . . . . . . 9 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
49 eluz2nn 12788 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5014, 8resubcld 11552 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℝ)
5150recnd 11147 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5249, 51syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5352abscld 15348 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
5449nnrecred 12183 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ∈ ℝ)
5515a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 2) ∈ ℝ)
562, 3subfaclim 35253 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
5749, 56syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
58 eluzle 12751 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
59 nnre 12139 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
60 nngt0 12163 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 < 𝑁)
61 lerec 12012 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6242, 44, 61mpanl12 702 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6359, 60, 62syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6449, 63syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6558, 64mpbid 232 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ≤ (1 / 2))
6653, 54, 55, 57, 65ltletrd 11280 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6748, 66jaoi 857 . . . . . . . 8 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6818, 67sylbi 217 . . . . . . 7 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6915a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 2) ∈ ℝ)
7014, 8, 69absdifltd 15345 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2) ↔ (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))))
7168, 70mpbid 232 . . . . . 6 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2))))
7271simpld 494 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e))
738, 69, 14ltsubaddd 11720 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ↔ (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2))))
7472, 73mpbid 232 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2)))
758, 17, 74ltled 11268 . . 3 (𝑁 ∈ ℕ → (𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)))
76 readdcl 11096 . . . . . 6 (((𝑆𝑁) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
778, 15, 76sylancl 586 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
7871simprd 495 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))
7914, 77, 69, 78ltadd1dd 11735 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < (((𝑆𝑁) + (1 / 2)) + (1 / 2)))
808recnd 11147 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
8169recnd 11147 . . . . . 6 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
8280, 81, 81addassd 11141 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + ((1 / 2) + (1 / 2))))
83 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
84 2halves 12346 . . . . . . 7 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8583, 84ax-mp 5 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
8685oveq2i 7363 . . . . 5 ((𝑆𝑁) + ((1 / 2) + (1 / 2))) = ((𝑆𝑁) + 1)
8782, 86eqtrdi 2784 . . . 4 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + 1))
8879, 87breqtrd 5119 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))
89 flbi 13722 . . . 4 (((((!‘𝑁) / e) + (1 / 2)) ∈ ℝ ∧ (𝑆𝑁) ∈ ℤ) → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9017, 7, 89syl2anc 584 . . 3 (𝑁 ∈ ℕ → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9175, 88, 90mpbir2and 713 . 2 (𝑁 ∈ ℕ → (⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁))
9291eqcomd 2739 1 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048   class class class wbr 5093  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  0cn0 12388  cz 12475  cuz 12738  +crp 12892  ...cfz 13409  cfl 13696  !cfa 14182  chash 14239  abscabs 15143  eceu 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-e 15977
This theorem is referenced by:  derangfmla  35255
  Copyright terms: Public domain W3C validator