Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Visualization version   GIF version

Theorem subfacval3 35157
Description: Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval3 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 12560 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 derang.d . . . . . . . . 9 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . . . . . . 9 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacf 35143 . . . . . . . 8 𝑆:ℕ0⟶ℕ0
54ffvelcdmi 7117 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
76nn0zd 12665 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℤ)
87zred 12747 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℝ)
9 faccl 14332 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
101, 9syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1110nnred 12308 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
12 epr 16256 . . . . . 6 e ∈ ℝ+
13 rerpdivcl 13087 . . . . . 6 (((!‘𝑁) ∈ ℝ ∧ e ∈ ℝ+) → ((!‘𝑁) / e) ∈ ℝ)
1411, 12, 13sylancl 585 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℝ)
15 halfre 12507 . . . . 5 (1 / 2) ∈ ℝ
16 readdcl 11267 . . . . 5 ((((!‘𝑁) / e) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
1714, 15, 16sylancl 585 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
18 elnn1uz2 12990 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
19 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (!‘𝑁) = (!‘1))
20 fac1 14326 . . . . . . . . . . . . . . . 16 (!‘1) = 1
2119, 20eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (!‘𝑁) = 1)
2221oveq1d 7463 . . . . . . . . . . . . . 14 (𝑁 = 1 → ((!‘𝑁) / e) = (1 / e))
23 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (𝑆𝑁) = (𝑆‘1))
242, 3subfac1 35146 . . . . . . . . . . . . . . 15 (𝑆‘1) = 0
2523, 24eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑁 = 1 → (𝑆𝑁) = 0)
2622, 25oveq12d 7466 . . . . . . . . . . . . 13 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = ((1 / e) − 0))
27 rpreccl 13083 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → (1 / e) ∈ ℝ+)
2812, 27ax-mp 5 . . . . . . . . . . . . . . . 16 (1 / e) ∈ ℝ+
29 rpre 13065 . . . . . . . . . . . . . . . 16 ((1 / e) ∈ ℝ+ → (1 / e) ∈ ℝ)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (1 / e) ∈ ℝ
3130recni 11304 . . . . . . . . . . . . . 14 (1 / e) ∈ ℂ
3231subid1i 11608 . . . . . . . . . . . . 13 ((1 / e) − 0) = (1 / e)
3326, 32eqtrdi 2796 . . . . . . . . . . . 12 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = (1 / e))
3433fveq2d 6924 . . . . . . . . . . 11 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘(1 / e)))
35 rpge0 13070 . . . . . . . . . . . . 13 ((1 / e) ∈ ℝ+ → 0 ≤ (1 / e))
3628, 35ax-mp 5 . . . . . . . . . . . 12 0 ≤ (1 / e)
37 absid 15345 . . . . . . . . . . . 12 (((1 / e) ∈ ℝ ∧ 0 ≤ (1 / e)) → (abs‘(1 / e)) = (1 / e))
3830, 36, 37mp2an 691 . . . . . . . . . . 11 (abs‘(1 / e)) = (1 / e)
3934, 38eqtrdi 2796 . . . . . . . . . 10 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (1 / e))
40 egt2lt3 16254 . . . . . . . . . . . 12 (2 < e ∧ e < 3)
4140simpli 483 . . . . . . . . . . 11 2 < e
42 2re 12367 . . . . . . . . . . . 12 2 ∈ ℝ
43 ere 16137 . . . . . . . . . . . 12 e ∈ ℝ
44 2pos 12396 . . . . . . . . . . . 12 0 < 2
45 epos 16255 . . . . . . . . . . . 12 0 < e
4642, 43, 44, 45ltrecii 12211 . . . . . . . . . . 11 (2 < e ↔ (1 / e) < (1 / 2))
4741, 46mpbi 230 . . . . . . . . . 10 (1 / e) < (1 / 2)
4839, 47eqbrtrdi 5205 . . . . . . . . 9 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
49 eluz2nn 12949 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5014, 8resubcld 11718 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℝ)
5150recnd 11318 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5249, 51syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5352abscld 15485 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
5449nnrecred 12344 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ∈ ℝ)
5515a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 2) ∈ ℝ)
562, 3subfaclim 35156 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
5749, 56syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
58 eluzle 12916 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
59 nnre 12300 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
60 nngt0 12324 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 < 𝑁)
61 lerec 12178 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6242, 44, 61mpanl12 701 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6359, 60, 62syl2anc 583 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6449, 63syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6558, 64mpbid 232 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ≤ (1 / 2))
6653, 54, 55, 57, 65ltletrd 11450 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6748, 66jaoi 856 . . . . . . . 8 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6818, 67sylbi 217 . . . . . . 7 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6915a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 2) ∈ ℝ)
7014, 8, 69absdifltd 15482 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2) ↔ (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))))
7168, 70mpbid 232 . . . . . 6 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2))))
7271simpld 494 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e))
738, 69, 14ltsubaddd 11886 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ↔ (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2))))
7472, 73mpbid 232 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2)))
758, 17, 74ltled 11438 . . 3 (𝑁 ∈ ℕ → (𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)))
76 readdcl 11267 . . . . . 6 (((𝑆𝑁) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
778, 15, 76sylancl 585 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
7871simprd 495 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))
7914, 77, 69, 78ltadd1dd 11901 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < (((𝑆𝑁) + (1 / 2)) + (1 / 2)))
808recnd 11318 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
8169recnd 11318 . . . . . 6 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
8280, 81, 81addassd 11312 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + ((1 / 2) + (1 / 2))))
83 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
84 2halves 12521 . . . . . . 7 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8583, 84ax-mp 5 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
8685oveq2i 7459 . . . . 5 ((𝑆𝑁) + ((1 / 2) + (1 / 2))) = ((𝑆𝑁) + 1)
8782, 86eqtrdi 2796 . . . 4 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + 1))
8879, 87breqtrd 5192 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))
89 flbi 13867 . . . 4 (((((!‘𝑁) / e) + (1 / 2)) ∈ ℝ ∧ (𝑆𝑁) ∈ ℤ) → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9017, 7, 89syl2anc 583 . . 3 (𝑁 ∈ ℕ → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9175, 88, 90mpbir2and 712 . 2 (𝑁 ∈ ℕ → (⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁))
9291eqcomd 2746 1 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067   class class class wbr 5166  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cfl 13841  !cfa 14322  chash 14379  abscabs 15283  eceu 16110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116
This theorem is referenced by:  derangfmla  35158
  Copyright terms: Public domain W3C validator