Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Visualization version   GIF version

Theorem subfacval3 35211
Description: Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval3 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 12508 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 derang.d . . . . . . . . 9 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . . . . . . 9 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacf 35197 . . . . . . . 8 𝑆:ℕ0⟶ℕ0
54ffvelcdmi 7073 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
76nn0zd 12614 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℤ)
87zred 12697 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℝ)
9 faccl 14301 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
101, 9syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1110nnred 12255 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
12 epr 16226 . . . . . 6 e ∈ ℝ+
13 rerpdivcl 13039 . . . . . 6 (((!‘𝑁) ∈ ℝ ∧ e ∈ ℝ+) → ((!‘𝑁) / e) ∈ ℝ)
1411, 12, 13sylancl 586 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℝ)
15 halfre 12454 . . . . 5 (1 / 2) ∈ ℝ
16 readdcl 11212 . . . . 5 ((((!‘𝑁) / e) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
1714, 15, 16sylancl 586 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
18 elnn1uz2 12941 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
19 fveq2 6876 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (!‘𝑁) = (!‘1))
20 fac1 14295 . . . . . . . . . . . . . . . 16 (!‘1) = 1
2119, 20eqtrdi 2786 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (!‘𝑁) = 1)
2221oveq1d 7420 . . . . . . . . . . . . . 14 (𝑁 = 1 → ((!‘𝑁) / e) = (1 / e))
23 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (𝑆𝑁) = (𝑆‘1))
242, 3subfac1 35200 . . . . . . . . . . . . . . 15 (𝑆‘1) = 0
2523, 24eqtrdi 2786 . . . . . . . . . . . . . 14 (𝑁 = 1 → (𝑆𝑁) = 0)
2622, 25oveq12d 7423 . . . . . . . . . . . . 13 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = ((1 / e) − 0))
27 rpreccl 13035 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → (1 / e) ∈ ℝ+)
2812, 27ax-mp 5 . . . . . . . . . . . . . . . 16 (1 / e) ∈ ℝ+
29 rpre 13017 . . . . . . . . . . . . . . . 16 ((1 / e) ∈ ℝ+ → (1 / e) ∈ ℝ)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (1 / e) ∈ ℝ
3130recni 11249 . . . . . . . . . . . . . 14 (1 / e) ∈ ℂ
3231subid1i 11555 . . . . . . . . . . . . 13 ((1 / e) − 0) = (1 / e)
3326, 32eqtrdi 2786 . . . . . . . . . . . 12 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = (1 / e))
3433fveq2d 6880 . . . . . . . . . . 11 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘(1 / e)))
35 rpge0 13022 . . . . . . . . . . . . 13 ((1 / e) ∈ ℝ+ → 0 ≤ (1 / e))
3628, 35ax-mp 5 . . . . . . . . . . . 12 0 ≤ (1 / e)
37 absid 15315 . . . . . . . . . . . 12 (((1 / e) ∈ ℝ ∧ 0 ≤ (1 / e)) → (abs‘(1 / e)) = (1 / e))
3830, 36, 37mp2an 692 . . . . . . . . . . 11 (abs‘(1 / e)) = (1 / e)
3934, 38eqtrdi 2786 . . . . . . . . . 10 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (1 / e))
40 egt2lt3 16224 . . . . . . . . . . . 12 (2 < e ∧ e < 3)
4140simpli 483 . . . . . . . . . . 11 2 < e
42 2re 12314 . . . . . . . . . . . 12 2 ∈ ℝ
43 ere 16105 . . . . . . . . . . . 12 e ∈ ℝ
44 2pos 12343 . . . . . . . . . . . 12 0 < 2
45 epos 16225 . . . . . . . . . . . 12 0 < e
4642, 43, 44, 45ltrecii 12158 . . . . . . . . . . 11 (2 < e ↔ (1 / e) < (1 / 2))
4741, 46mpbi 230 . . . . . . . . . 10 (1 / e) < (1 / 2)
4839, 47eqbrtrdi 5158 . . . . . . . . 9 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
49 eluz2nn 12898 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5014, 8resubcld 11665 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℝ)
5150recnd 11263 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5249, 51syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5352abscld 15455 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
5449nnrecred 12291 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ∈ ℝ)
5515a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 2) ∈ ℝ)
562, 3subfaclim 35210 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
5749, 56syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
58 eluzle 12865 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
59 nnre 12247 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
60 nngt0 12271 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 < 𝑁)
61 lerec 12125 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6242, 44, 61mpanl12 702 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6359, 60, 62syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6449, 63syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6558, 64mpbid 232 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ≤ (1 / 2))
6653, 54, 55, 57, 65ltletrd 11395 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6748, 66jaoi 857 . . . . . . . 8 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6818, 67sylbi 217 . . . . . . 7 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6915a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 2) ∈ ℝ)
7014, 8, 69absdifltd 15452 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2) ↔ (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))))
7168, 70mpbid 232 . . . . . 6 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2))))
7271simpld 494 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e))
738, 69, 14ltsubaddd 11833 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ↔ (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2))))
7472, 73mpbid 232 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2)))
758, 17, 74ltled 11383 . . 3 (𝑁 ∈ ℕ → (𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)))
76 readdcl 11212 . . . . . 6 (((𝑆𝑁) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
778, 15, 76sylancl 586 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
7871simprd 495 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))
7914, 77, 69, 78ltadd1dd 11848 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < (((𝑆𝑁) + (1 / 2)) + (1 / 2)))
808recnd 11263 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
8169recnd 11263 . . . . . 6 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
8280, 81, 81addassd 11257 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + ((1 / 2) + (1 / 2))))
83 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
84 2halves 12459 . . . . . . 7 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8583, 84ax-mp 5 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
8685oveq2i 7416 . . . . 5 ((𝑆𝑁) + ((1 / 2) + (1 / 2))) = ((𝑆𝑁) + 1)
8782, 86eqtrdi 2786 . . . 4 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + 1))
8879, 87breqtrd 5145 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))
89 flbi 13833 . . . 4 (((((!‘𝑁) / e) + (1 / 2)) ∈ ℝ ∧ (𝑆𝑁) ∈ ℤ) → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9017, 7, 89syl2anc 584 . . 3 (𝑁 ∈ ℕ → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9175, 88, 90mpbir2and 713 . 2 (𝑁 ∈ ℕ → (⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁))
9291eqcomd 2741 1 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051   class class class wbr 5119  cmpt 5201  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  3c3 12296  0cn0 12501  cz 12588  cuz 12852  +crp 13008  ...cfz 13524  cfl 13807  !cfa 14291  chash 14348  abscabs 15253  eceu 16078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-e 16084
This theorem is referenced by:  derangfmla  35212
  Copyright terms: Public domain W3C validator