| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2halvesd | Structured version Visualization version GIF version | ||
| Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2halvesd | ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2halves 12400 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 / cdiv 11835 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 |
| This theorem is referenced by: reccn2 15563 mertenslem1 15850 sin01bnd 16153 prmreclem5 16891 4sqlem6 16914 4sqlem10 16918 4sqlem15 16930 4sqlem16 16931 blhalf 24293 methaus 24408 nrginvrcnlem 24579 opnreen 24720 iscau3 25178 ovollb2lem 25389 ovolunlem1a 25397 itg2cnlem2 25663 ulmcn 26308 ulmdvlem1 26309 cxpcn3lem 26657 chordthmlem4 26745 lgamgulmlem3 26941 ftalem2 26984 chtub 27123 lgsqrlem2 27258 lgseisenlem2 27287 lgsquadlem1 27291 2sqlem8 27337 mulog2sumlem1 27445 vmalogdivsum 27450 pntibndlem2 27502 lt2addrd 32674 le2halvesd 32679 dnizphlfeqhlf 36464 poimirlem29 37643 heicant 37649 mblfinlem4 37654 itg2addnclem 37665 ftc1anclem6 37692 ftc1anclem8 37694 heibor1lem 37803 aks4d1p1p4 42059 suplesup 45335 lptre2pt 45638 0ellimcdiv 45647 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 dirkertrigeqlem2 46097 dirkercncflem1 46101 sge0xaddlem1 46431 hoiqssbllem2 46621 |
| Copyright terms: Public domain | W3C validator |