Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 + caddc 11113 / cdiv 11871
2c2 12267 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-2 12275 |
This theorem is referenced by: reccn2
15541 mertenslem1
15830 sin01bnd
16128 prmreclem5
16853 4sqlem6
16876 4sqlem10
16880 4sqlem15
16892 4sqlem16
16893 blhalf
23911 methaus
24029 nrginvrcnlem
24208 opnreen
24347 iscau3
24795 ovollb2lem
25005 ovolunlem1a
25013 itg2cnlem2
25280 ulmcn
25911 ulmdvlem1
25912 cxpcn3lem
26255 chordthmlem4
26340 lgamgulmlem3
26535 ftalem2
26578 chtub
26715 lgsqrlem2
26850 lgseisenlem2
26879 lgsquadlem1
26883 2sqlem8
26929 mulog2sumlem1
27037 vmalogdivsum
27042 pntibndlem2
27094 lt2addrd
31964 le2halvesd
31968 dnizphlfeqhlf
35352 poimirlem29
36517 heicant
36523 mblfinlem4
36528 itg2addnclem
36539 ftc1anclem6
36566 ftc1anclem8
36568 heibor1lem
36677 aks4d1p1p4
40936 suplesup
44049 lptre2pt
44356 0ellimcdiv
44365 ioodvbdlimc1lem2
44648 ioodvbdlimc2lem
44650 dirkertrigeqlem2
44815 dirkercncflem1
44819 sge0xaddlem1
45149 hoiqssbllem2
45339 |