MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2halvesd Structured version   Visualization version   GIF version

Theorem 2halvesd 11565
Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
2halvesd (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)

Proof of Theorem 2halvesd
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 2halves 11547 . 2 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
31, 2syl 17 1 (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  (class class class)co 6879  cc 10223   + caddc 10228   / cdiv 10977  2c2 11367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-po 5234  df-so 5235  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-2 11375
This theorem is referenced by:  reccn2  14667  mertenslem1  14952  sin01bnd  15250  prmreclem5  15956  4sqlem6  15979  4sqlem10  15983  4sqlem15  15995  4sqlem16  15996  blhalf  22537  methaus  22652  nrginvrcnlem  22822  opnreen  22961  iscau3  23403  ovollb2lem  23595  ovolunlem1a  23603  itg2cnlem2  23869  ulmcn  24493  ulmdvlem1  24494  cxpcn3lem  24831  chordthmlem4  24913  lgamgulmlem3  25108  ftalem2  25151  chtub  25288  lgsqrlem2  25423  lgseisenlem2  25452  lgsquadlem1  25456  2sqlem8  25502  mulog2sumlem1  25574  vmalogdivsum  25579  pntibndlem2  25631  lt2addrd  30033  le2halvesd  30037  dnizphlfeqhlf  32973  poimirlem29  33926  heicant  33932  mblfinlem4  33937  itg2addnclem  33948  ftc1anclem6  33977  ftc1anclem8  33979  heibor1lem  34094  suplesup  40294  lptre2pt  40611  0ellimcdiv  40620  ioodvbdlimc1lem2  40886  ioodvbdlimc2lem  40888  dirkertrigeqlem2  41054  dirkercncflem1  41058  sge0xaddlem1  41388  hoiqssbllem2  41578
  Copyright terms: Public domain W3C validator