![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2halvesd | Structured version Visualization version GIF version |
Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2halvesd | ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2halves 11547 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 (class class class)co 6879 ℂcc 10223 + caddc 10228 / cdiv 10977 2c2 11367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-2 11375 |
This theorem is referenced by: reccn2 14667 mertenslem1 14952 sin01bnd 15250 prmreclem5 15956 4sqlem6 15979 4sqlem10 15983 4sqlem15 15995 4sqlem16 15996 blhalf 22537 methaus 22652 nrginvrcnlem 22822 opnreen 22961 iscau3 23403 ovollb2lem 23595 ovolunlem1a 23603 itg2cnlem2 23869 ulmcn 24493 ulmdvlem1 24494 cxpcn3lem 24831 chordthmlem4 24913 lgamgulmlem3 25108 ftalem2 25151 chtub 25288 lgsqrlem2 25423 lgseisenlem2 25452 lgsquadlem1 25456 2sqlem8 25502 mulog2sumlem1 25574 vmalogdivsum 25579 pntibndlem2 25631 lt2addrd 30033 le2halvesd 30037 dnizphlfeqhlf 32973 poimirlem29 33926 heicant 33932 mblfinlem4 33937 itg2addnclem 33948 ftc1anclem6 33977 ftc1anclem8 33979 heibor1lem 34094 suplesup 40294 lptre2pt 40611 0ellimcdiv 40620 ioodvbdlimc1lem2 40886 ioodvbdlimc2lem 40888 dirkertrigeqlem2 41054 dirkercncflem1 41058 sge0xaddlem1 41388 hoiqssbllem2 41578 |
Copyright terms: Public domain | W3C validator |