Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7358
ℂcc 11050 + caddc 11055 / cdiv 11813
2c2 12209 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-2 12217 |
This theorem is referenced by: reccn2
15480 mertenslem1
15770 sin01bnd
16068 prmreclem5
16793 4sqlem6
16816 4sqlem10
16820 4sqlem15
16832 4sqlem16
16833 blhalf
23761 methaus
23879 nrginvrcnlem
24058 opnreen
24197 iscau3
24645 ovollb2lem
24855 ovolunlem1a
24863 itg2cnlem2
25130 ulmcn
25761 ulmdvlem1
25762 cxpcn3lem
26103 chordthmlem4
26188 lgamgulmlem3
26383 ftalem2
26426 chtub
26563 lgsqrlem2
26698 lgseisenlem2
26727 lgsquadlem1
26731 2sqlem8
26777 mulog2sumlem1
26885 vmalogdivsum
26890 pntibndlem2
26942 lt2addrd
31659 le2halvesd
31663 dnizphlfeqhlf
34942 poimirlem29
36110 heicant
36116 mblfinlem4
36121 itg2addnclem
36132 ftc1anclem6
36159 ftc1anclem8
36161 heibor1lem
36271 aks4d1p1p4
40531 suplesup
43580 lptre2pt
43888 0ellimcdiv
43897 ioodvbdlimc1lem2
44180 ioodvbdlimc2lem
44182 dirkertrigeqlem2
44347 dirkercncflem1
44351 sge0xaddlem1
44681 hoiqssbllem2
44871 |