| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2halvesd | Structured version Visualization version GIF version | ||
| Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| 2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| 2halvesd | ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 2halves 12376 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 / cdiv 11811 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 |
| This theorem is referenced by: reccn2 15539 mertenslem1 15826 sin01bnd 16129 prmreclem5 16867 4sqlem6 16890 4sqlem10 16894 4sqlem15 16906 4sqlem16 16907 blhalf 24269 methaus 24384 nrginvrcnlem 24555 opnreen 24696 iscau3 25154 ovollb2lem 25365 ovolunlem1a 25373 itg2cnlem2 25639 ulmcn 26284 ulmdvlem1 26285 cxpcn3lem 26633 chordthmlem4 26721 lgamgulmlem3 26917 ftalem2 26960 chtub 27099 lgsqrlem2 27234 lgseisenlem2 27263 lgsquadlem1 27267 2sqlem8 27313 mulog2sumlem1 27421 vmalogdivsum 27426 pntibndlem2 27478 lt2addrd 32647 le2halvesd 32652 dnizphlfeqhlf 36437 poimirlem29 37616 heicant 37622 mblfinlem4 37627 itg2addnclem 37638 ftc1anclem6 37665 ftc1anclem8 37667 heibor1lem 37776 aks4d1p1p4 42032 suplesup 45308 lptre2pt 45611 0ellimcdiv 45620 ioodvbdlimc1lem2 45903 ioodvbdlimc2lem 45905 dirkertrigeqlem2 46070 dirkercncflem1 46074 sge0xaddlem1 46404 hoiqssbllem2 46594 |
| Copyright terms: Public domain | W3C validator |