MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsbdaylem Structured version   Visualization version   GIF version

Theorem addsbdaylem 27946
Description: Lemma for addsbday 27947. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypotheses
Ref Expression
addsbdaylem.1 (𝜑𝐴 No )
addsbdaylem.2 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
addsbdaylem.3 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
Assertion
Ref Expression
addsbdaylem (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Distinct variable groups:   𝐴,𝑦𝑂,𝑦𝐿,𝑧   𝐵,𝑦𝑂,𝑦𝐿,𝑧   𝜑,𝑦𝐿,𝑧   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦𝑂)   𝑆(𝑦𝑂,𝑦𝐿)

Proof of Theorem addsbdaylem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → (𝐴 +s 𝑦𝑂) = (𝐴 +s 𝑦𝐿))
21fveq2d 6830 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → ( bday ‘(𝐴 +s 𝑦𝑂)) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3 fveq2 6826 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → ( bday 𝑦𝑂) = ( bday 𝑦𝐿))
43oveq2d 7369 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → (( bday 𝐴) +no ( bday 𝑦𝑂)) = (( bday 𝐴) +no ( bday 𝑦𝐿)))
52, 4sseq12d 3971 . . . . . . . 8 (𝑦𝑂 = 𝑦𝐿 → (( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿))))
6 addsbdaylem.2 . . . . . . . . 9 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
76adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
8 addsbdaylem.3 . . . . . . . . . 10 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
98sseli 3933 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
109adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
115, 7, 10rspcdva 3580 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)))
12 lrold 27829 . . . . . . . . . . . 12 (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday 𝐵))
138, 12sseqtri 3986 . . . . . . . . . . 11 𝑆 ⊆ ( O ‘( bday 𝐵))
1413sseli 3933 . . . . . . . . . 10 (𝑦𝐿𝑆𝑦𝐿 ∈ ( O ‘( bday 𝐵)))
15 oldbdayim 27821 . . . . . . . . . 10 (𝑦𝐿 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1614, 15syl 17 . . . . . . . . 9 (𝑦𝐿𝑆 → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1716adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
18 bdayelon 27704 . . . . . . . . 9 ( bday 𝑦𝐿) ∈ On
19 bdayelon 27704 . . . . . . . . 9 ( bday 𝐵) ∈ On
20 bdayelon 27704 . . . . . . . . 9 ( bday 𝐴) ∈ On
21 naddel2 8613 . . . . . . . . 9 ((( bday 𝑦𝐿) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2218, 19, 20, 21mp3an 1463 . . . . . . . 8 (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2317, 22sylib 218 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
24 bdayelon 27704 . . . . . . . 8 ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On
25 naddcl 8602 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝐴) +no ( bday 𝐵)) ∈ On)
2620, 19, 25mp2an 692 . . . . . . . 8 (( bday 𝐴) +no ( bday 𝐵)) ∈ On
27 ontr2 6359 . . . . . . . 8 ((( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 26, 27mp2an 692 . . . . . . 7 ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2911, 23, 28syl2anc 584 . . . . . 6 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 fveq2 6826 . . . . . . 7 (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3130eleq1d 2813 . . . . . 6 (𝑤 = (𝐴 +s 𝑦𝐿) → (( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3229, 31syl5ibrcom 247 . . . . 5 ((𝜑𝑦𝐿𝑆) → (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3332rexlimdva 3130 . . . 4 (𝜑 → (∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3433alrimiv 1927 . . 3 (𝜑 → ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
35 eqeq1 2733 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s 𝑦𝐿) ↔ 𝑤 = (𝐴 +s 𝑦𝐿)))
3635rexbidv 3153 . . . 4 (𝑧 = 𝑤 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) ↔ ∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿)))
3736ralab 3655 . . 3 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3834, 37sylibr 234 . 2 (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)))
39 bdayfun 27700 . . 3 Fun bday
40 addsbdaylem.1 . . . . . . . . 9 (𝜑𝐴 No )
4140adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝐴 No )
42 leftssno 27813 . . . . . . . . . . . 12 ( L ‘𝐵) ⊆ No
43 rightssno 27814 . . . . . . . . . . . 12 ( R ‘𝐵) ⊆ No
4442, 43unssi 4144 . . . . . . . . . . 11 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
458, 44sstri 3947 . . . . . . . . . 10 𝑆 No
4645sseli 3933 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 No )
4746adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 No )
4841, 47addscld 27910 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (𝐴 +s 𝑦𝐿) ∈ No )
49 eleq1 2816 . . . . . . 7 (𝑧 = (𝐴 +s 𝑦𝐿) → (𝑧 No ↔ (𝐴 +s 𝑦𝐿) ∈ No ))
5048, 49syl5ibrcom 247 . . . . . 6 ((𝜑𝑦𝐿𝑆) → (𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5150rexlimdva 3130 . . . . 5 (𝜑 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5251abssdv 4022 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ No )
53 bdaydm 27702 . . . 4 dom bday = No
5452, 53sseqtrrdi 3979 . . 3 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday )
55 funimass4 6891 . . 3 ((Fun bday ∧ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday ) → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5639, 54, 55sylancr 587 . 2 (𝜑 → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5738, 56mpbird 257 1 (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3903  wss 3905  dom cdm 5623  cima 5626  Oncon0 6311  Fun wfun 6480  cfv 6486  (class class class)co 7353   +no cnadd 8590   No csur 27567   bday cbday 27569   O cold 27771   L cleft 27773   R cright 27774   +s cadds 27889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890
This theorem is referenced by:  addsbday  27947
  Copyright terms: Public domain W3C validator