MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsbdaylem Structured version   Visualization version   GIF version

Theorem addsbdaylem 28075
Description: Lemma for addsbday 28076. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypotheses
Ref Expression
addsbdaylem.1 (𝜑𝐴 No )
addsbdaylem.2 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
addsbdaylem.3 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
Assertion
Ref Expression
addsbdaylem (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Distinct variable groups:   𝐴,𝑦𝑂,𝑦𝐿,𝑧   𝐵,𝑦𝑂,𝑦𝐿,𝑧   𝜑,𝑦𝐿,𝑧   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦𝑂)   𝑆(𝑦𝑂,𝑦𝐿)

Proof of Theorem addsbdaylem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7446 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → (𝐴 +s 𝑦𝑂) = (𝐴 +s 𝑦𝐿))
21fveq2d 6918 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → ( bday ‘(𝐴 +s 𝑦𝑂)) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3 fveq2 6914 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → ( bday 𝑦𝑂) = ( bday 𝑦𝐿))
43oveq2d 7454 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → (( bday 𝐴) +no ( bday 𝑦𝑂)) = (( bday 𝐴) +no ( bday 𝑦𝐿)))
52, 4sseq12d 4032 . . . . . . . 8 (𝑦𝑂 = 𝑦𝐿 → (( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿))))
6 addsbdaylem.2 . . . . . . . . 9 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
76adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
8 addsbdaylem.3 . . . . . . . . . 10 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
98sseli 3994 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
109adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
115, 7, 10rspcdva 3626 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)))
12 lrold 27961 . . . . . . . . . . . 12 (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday 𝐵))
138, 12sseqtri 4035 . . . . . . . . . . 11 𝑆 ⊆ ( O ‘( bday 𝐵))
1413sseli 3994 . . . . . . . . . 10 (𝑦𝐿𝑆𝑦𝐿 ∈ ( O ‘( bday 𝐵)))
15 oldbdayim 27953 . . . . . . . . . 10 (𝑦𝐿 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1614, 15syl 17 . . . . . . . . 9 (𝑦𝐿𝑆 → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1716adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
18 bdayelon 27847 . . . . . . . . 9 ( bday 𝑦𝐿) ∈ On
19 bdayelon 27847 . . . . . . . . 9 ( bday 𝐵) ∈ On
20 bdayelon 27847 . . . . . . . . 9 ( bday 𝐴) ∈ On
21 naddel2 8734 . . . . . . . . 9 ((( bday 𝑦𝐿) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2218, 19, 20, 21mp3an 1462 . . . . . . . 8 (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2317, 22sylib 218 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
24 bdayelon 27847 . . . . . . . 8 ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On
25 naddcl 8723 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝐴) +no ( bday 𝐵)) ∈ On)
2620, 19, 25mp2an 692 . . . . . . . 8 (( bday 𝐴) +no ( bday 𝐵)) ∈ On
27 ontr2 6439 . . . . . . . 8 ((( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 26, 27mp2an 692 . . . . . . 7 ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2911, 23, 28syl2anc 584 . . . . . 6 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 fveq2 6914 . . . . . . 7 (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3130eleq1d 2826 . . . . . 6 (𝑤 = (𝐴 +s 𝑦𝐿) → (( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3229, 31syl5ibrcom 247 . . . . 5 ((𝜑𝑦𝐿𝑆) → (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3332rexlimdva 3155 . . . 4 (𝜑 → (∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3433alrimiv 1927 . . 3 (𝜑 → ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
35 eqeq1 2741 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s 𝑦𝐿) ↔ 𝑤 = (𝐴 +s 𝑦𝐿)))
3635rexbidv 3179 . . . 4 (𝑧 = 𝑤 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) ↔ ∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿)))
3736ralab 3703 . . 3 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3834, 37sylibr 234 . 2 (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)))
39 bdayfun 27843 . . 3 Fun bday
40 addsbdaylem.1 . . . . . . . . 9 (𝜑𝐴 No )
4140adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝐴 No )
42 leftssno 27945 . . . . . . . . . . . 12 ( L ‘𝐵) ⊆ No
43 rightssno 27946 . . . . . . . . . . . 12 ( R ‘𝐵) ⊆ No
4442, 43unssi 4204 . . . . . . . . . . 11 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
458, 44sstri 4008 . . . . . . . . . 10 𝑆 No
4645sseli 3994 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 No )
4746adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 No )
4841, 47addscld 28039 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (𝐴 +s 𝑦𝐿) ∈ No )
49 eleq1 2829 . . . . . . 7 (𝑧 = (𝐴 +s 𝑦𝐿) → (𝑧 No ↔ (𝐴 +s 𝑦𝐿) ∈ No ))
5048, 49syl5ibrcom 247 . . . . . 6 ((𝜑𝑦𝐿𝑆) → (𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5150rexlimdva 3155 . . . . 5 (𝜑 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5251abssdv 4081 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ No )
53 bdaydm 27845 . . . 4 dom bday = No
5452, 53sseqtrrdi 4050 . . 3 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday )
55 funimass4 6980 . . 3 ((Fun bday ∧ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday ) → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5639, 54, 55sylancr 587 . 2 (𝜑 → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5738, 56mpbird 257 1 (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2714  wral 3061  wrex 3070  cun 3964  wss 3966  dom cdm 5693  cima 5696  Oncon0 6392  Fun wfun 6563  cfv 6569  (class class class)co 7438   +no cnadd 8711   No csur 27710   bday cbday 27712   O cold 27908   L cleft 27910   R cright 27911   +s cadds 28018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-1o 8514  df-2o 8515  df-nadd 8712  df-no 27713  df-slt 27714  df-bday 27715  df-sslt 27852  df-scut 27854  df-0s 27895  df-made 27912  df-old 27913  df-left 27915  df-right 27916  df-norec2 28008  df-adds 28019
This theorem is referenced by:  addsbday  28076
  Copyright terms: Public domain W3C validator