MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsbdaylem Structured version   Visualization version   GIF version

Theorem addsbdaylem 27984
Description: Lemma for addsbday 27985. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypotheses
Ref Expression
addsbdaylem.1 (𝜑𝐴 No )
addsbdaylem.2 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
addsbdaylem.3 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
Assertion
Ref Expression
addsbdaylem (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Distinct variable groups:   𝐴,𝑦𝑂,𝑦𝐿,𝑧   𝐵,𝑦𝑂,𝑦𝐿,𝑧   𝜑,𝑦𝐿,𝑧   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦𝑂)   𝑆(𝑦𝑂,𝑦𝐿)

Proof of Theorem addsbdaylem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → (𝐴 +s 𝑦𝑂) = (𝐴 +s 𝑦𝐿))
21fveq2d 6889 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → ( bday ‘(𝐴 +s 𝑦𝑂)) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3 fveq2 6885 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → ( bday 𝑦𝑂) = ( bday 𝑦𝐿))
43oveq2d 7428 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → (( bday 𝐴) +no ( bday 𝑦𝑂)) = (( bday 𝐴) +no ( bday 𝑦𝐿)))
52, 4sseq12d 3997 . . . . . . . 8 (𝑦𝑂 = 𝑦𝐿 → (( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿))))
6 addsbdaylem.2 . . . . . . . . 9 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
76adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
8 addsbdaylem.3 . . . . . . . . . 10 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
98sseli 3959 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
109adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
115, 7, 10rspcdva 3606 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)))
12 lrold 27870 . . . . . . . . . . . 12 (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday 𝐵))
138, 12sseqtri 4012 . . . . . . . . . . 11 𝑆 ⊆ ( O ‘( bday 𝐵))
1413sseli 3959 . . . . . . . . . 10 (𝑦𝐿𝑆𝑦𝐿 ∈ ( O ‘( bday 𝐵)))
15 oldbdayim 27862 . . . . . . . . . 10 (𝑦𝐿 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1614, 15syl 17 . . . . . . . . 9 (𝑦𝐿𝑆 → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1716adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
18 bdayelon 27756 . . . . . . . . 9 ( bday 𝑦𝐿) ∈ On
19 bdayelon 27756 . . . . . . . . 9 ( bday 𝐵) ∈ On
20 bdayelon 27756 . . . . . . . . 9 ( bday 𝐴) ∈ On
21 naddel2 8707 . . . . . . . . 9 ((( bday 𝑦𝐿) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2218, 19, 20, 21mp3an 1462 . . . . . . . 8 (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2317, 22sylib 218 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
24 bdayelon 27756 . . . . . . . 8 ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On
25 naddcl 8696 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝐴) +no ( bday 𝐵)) ∈ On)
2620, 19, 25mp2an 692 . . . . . . . 8 (( bday 𝐴) +no ( bday 𝐵)) ∈ On
27 ontr2 6410 . . . . . . . 8 ((( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 26, 27mp2an 692 . . . . . . 7 ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2911, 23, 28syl2anc 584 . . . . . 6 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 fveq2 6885 . . . . . . 7 (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3130eleq1d 2818 . . . . . 6 (𝑤 = (𝐴 +s 𝑦𝐿) → (( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3229, 31syl5ibrcom 247 . . . . 5 ((𝜑𝑦𝐿𝑆) → (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3332rexlimdva 3142 . . . 4 (𝜑 → (∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3433alrimiv 1926 . . 3 (𝜑 → ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
35 eqeq1 2738 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s 𝑦𝐿) ↔ 𝑤 = (𝐴 +s 𝑦𝐿)))
3635rexbidv 3166 . . . 4 (𝑧 = 𝑤 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) ↔ ∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿)))
3736ralab 3680 . . 3 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3834, 37sylibr 234 . 2 (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)))
39 bdayfun 27752 . . 3 Fun bday
40 addsbdaylem.1 . . . . . . . . 9 (𝜑𝐴 No )
4140adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝐴 No )
42 leftssno 27854 . . . . . . . . . . . 12 ( L ‘𝐵) ⊆ No
43 rightssno 27855 . . . . . . . . . . . 12 ( R ‘𝐵) ⊆ No
4442, 43unssi 4171 . . . . . . . . . . 11 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
458, 44sstri 3973 . . . . . . . . . 10 𝑆 No
4645sseli 3959 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 No )
4746adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 No )
4841, 47addscld 27948 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (𝐴 +s 𝑦𝐿) ∈ No )
49 eleq1 2821 . . . . . . 7 (𝑧 = (𝐴 +s 𝑦𝐿) → (𝑧 No ↔ (𝐴 +s 𝑦𝐿) ∈ No ))
5048, 49syl5ibrcom 247 . . . . . 6 ((𝜑𝑦𝐿𝑆) → (𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5150rexlimdva 3142 . . . . 5 (𝜑 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5251abssdv 4048 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ No )
53 bdaydm 27754 . . . 4 dom bday = No
5452, 53sseqtrrdi 4005 . . 3 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday )
55 funimass4 6952 . . 3 ((Fun bday ∧ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday ) → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5639, 54, 55sylancr 587 . 2 (𝜑 → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5738, 56mpbird 257 1 (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  cun 3929  wss 3931  dom cdm 5665  cima 5668  Oncon0 6363  Fun wfun 6534  cfv 6540  (class class class)co 7412   +no cnadd 8684   No csur 27619   bday cbday 27621   O cold 27817   L cleft 27819   R cright 27820   +s cadds 27927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-nadd 8685  df-no 27622  df-slt 27623  df-bday 27624  df-sslt 27761  df-scut 27763  df-0s 27804  df-made 27821  df-old 27822  df-left 27824  df-right 27825  df-norec2 27917  df-adds 27928
This theorem is referenced by:  addsbday  27985
  Copyright terms: Public domain W3C validator