MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsbdaylem Structured version   Visualization version   GIF version

Theorem addsbdaylem 27960
Description: Lemma for addsbday 27961. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypotheses
Ref Expression
addsbdaylem.1 (𝜑𝐴 No )
addsbdaylem.2 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
addsbdaylem.3 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
Assertion
Ref Expression
addsbdaylem (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Distinct variable groups:   𝐴,𝑦𝑂,𝑦𝐿,𝑧   𝐵,𝑦𝑂,𝑦𝐿,𝑧   𝜑,𝑦𝐿,𝑧   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦𝑂)   𝑆(𝑦𝑂,𝑦𝐿)

Proof of Theorem addsbdaylem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → (𝐴 +s 𝑦𝑂) = (𝐴 +s 𝑦𝐿))
21fveq2d 6832 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → ( bday ‘(𝐴 +s 𝑦𝑂)) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3 fveq2 6828 . . . . . . . . . 10 (𝑦𝑂 = 𝑦𝐿 → ( bday 𝑦𝑂) = ( bday 𝑦𝐿))
43oveq2d 7368 . . . . . . . . 9 (𝑦𝑂 = 𝑦𝐿 → (( bday 𝐴) +no ( bday 𝑦𝑂)) = (( bday 𝐴) +no ( bday 𝑦𝐿)))
52, 4sseq12d 3964 . . . . . . . 8 (𝑦𝑂 = 𝑦𝐿 → (( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿))))
6 addsbdaylem.2 . . . . . . . . 9 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
76adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝑂)))
8 addsbdaylem.3 . . . . . . . . . 10 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵))
98sseli 3926 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
109adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
115, 7, 10rspcdva 3574 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)))
12 lrold 27843 . . . . . . . . . . . 12 (( L ‘𝐵) ∪ ( R ‘𝐵)) = ( O ‘( bday 𝐵))
138, 12sseqtri 3979 . . . . . . . . . . 11 𝑆 ⊆ ( O ‘( bday 𝐵))
1413sseli 3926 . . . . . . . . . 10 (𝑦𝐿𝑆𝑦𝐿 ∈ ( O ‘( bday 𝐵)))
15 oldbdayim 27835 . . . . . . . . . 10 (𝑦𝐿 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1614, 15syl 17 . . . . . . . . 9 (𝑦𝐿𝑆 → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
1716adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → ( bday 𝑦𝐿) ∈ ( bday 𝐵))
18 bdayelon 27716 . . . . . . . . 9 ( bday 𝑦𝐿) ∈ On
19 bdayelon 27716 . . . . . . . . 9 ( bday 𝐵) ∈ On
20 bdayelon 27716 . . . . . . . . 9 ( bday 𝐴) ∈ On
21 naddel2 8609 . . . . . . . . 9 ((( bday 𝑦𝐿) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2218, 19, 20, 21mp3an 1463 . . . . . . . 8 (( bday 𝑦𝐿) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2317, 22sylib 218 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
24 bdayelon 27716 . . . . . . . 8 ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On
25 naddcl 8598 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝐴) +no ( bday 𝐵)) ∈ On)
2620, 19, 25mp2an 692 . . . . . . . 8 (( bday 𝐴) +no ( bday 𝐵)) ∈ On
27 ontr2 6359 . . . . . . . 8 ((( bday ‘(𝐴 +s 𝑦𝐿)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 26, 27mp2an 692 . . . . . . 7 ((( bday ‘(𝐴 +s 𝑦𝐿)) ⊆ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∧ (( bday 𝐴) +no ( bday 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2911, 23, 28syl2anc 584 . . . . . 6 ((𝜑𝑦𝐿𝑆) → ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 fveq2 6828 . . . . . . 7 (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) = ( bday ‘(𝐴 +s 𝑦𝐿)))
3130eleq1d 2818 . . . . . 6 (𝑤 = (𝐴 +s 𝑦𝐿) → (( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ( bday ‘(𝐴 +s 𝑦𝐿)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3229, 31syl5ibrcom 247 . . . . 5 ((𝜑𝑦𝐿𝑆) → (𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3332rexlimdva 3134 . . . 4 (𝜑 → (∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3433alrimiv 1928 . . 3 (𝜑 → ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
35 eqeq1 2737 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (𝐴 +s 𝑦𝐿) ↔ 𝑤 = (𝐴 +s 𝑦𝐿)))
3635rexbidv 3157 . . . 4 (𝑧 = 𝑤 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) ↔ ∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿)))
3736ralab 3648 . . 3 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤(∃𝑦𝐿𝑆 𝑤 = (𝐴 +s 𝑦𝐿) → ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3834, 37sylibr 234 . 2 (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵)))
39 bdayfun 27712 . . 3 Fun bday
40 addsbdaylem.1 . . . . . . . . 9 (𝜑𝐴 No )
4140adantr 480 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝐴 No )
42 leftssno 27827 . . . . . . . . . . . 12 ( L ‘𝐵) ⊆ No
43 rightssno 27828 . . . . . . . . . . . 12 ( R ‘𝐵) ⊆ No
4442, 43unssi 4140 . . . . . . . . . . 11 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
458, 44sstri 3940 . . . . . . . . . 10 𝑆 No
4645sseli 3926 . . . . . . . . 9 (𝑦𝐿𝑆𝑦𝐿 No )
4746adantl 481 . . . . . . . 8 ((𝜑𝑦𝐿𝑆) → 𝑦𝐿 No )
4841, 47addscld 27924 . . . . . . 7 ((𝜑𝑦𝐿𝑆) → (𝐴 +s 𝑦𝐿) ∈ No )
49 eleq1 2821 . . . . . . 7 (𝑧 = (𝐴 +s 𝑦𝐿) → (𝑧 No ↔ (𝐴 +s 𝑦𝐿) ∈ No ))
5048, 49syl5ibrcom 247 . . . . . 6 ((𝜑𝑦𝐿𝑆) → (𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5150rexlimdva 3134 . . . . 5 (𝜑 → (∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿) → 𝑧 No ))
5251abssdv 4016 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ No )
53 bdaydm 27714 . . . 4 dom bday = No
5452, 53sseqtrrdi 3972 . . 3 (𝜑 → {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday )
55 funimass4 6892 . . 3 ((Fun bday ∧ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ⊆ dom bday ) → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5639, 54, 55sylancr 587 . 2 (𝜑 → (( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)} ( bday 𝑤) ∈ (( bday 𝐴) +no ( bday 𝐵))))
5738, 56mpbird 257 1 (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday 𝐴) +no ( bday 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  cun 3896  wss 3898  dom cdm 5619  cima 5622  Oncon0 6311  Fun wfun 6480  cfv 6486  (class class class)co 7352   +no cnadd 8586   No csur 27579   bday cbday 27581   O cold 27785   L cleft 27787   R cright 27788   +s cadds 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904
This theorem is referenced by:  addsbday  27961
  Copyright terms: Public domain W3C validator