MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfre Structured version   Visualization version   GIF version

Theorem dvfre 25932
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
dvfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)

Proof of Theorem dvfre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 25885 . . 3 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
2 ffn 6723 . . 3 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
31, 2mp1i 13 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
41ffvelcdmi 7092 . . . . 5 (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
54adantl 480 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
6 simpr 483 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹))
7 fvco3 6996 . . . . . 6 (((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
81, 6, 7sylancr 585 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
9 ax-resscn 11202 . . . . . . . . . 10 ℝ ⊆ ℂ
10 fss 6739 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
119, 10mpan2 689 . . . . . . . . 9 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
12 dvcj 25931 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
1311, 12sylan 578 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
14 ffvelcdm 7090 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514adantlr 713 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1615cjred 15214 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (∗‘(𝐹𝑦)) = (𝐹𝑦))
1716mpteq2dva 5249 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 ↦ (∗‘(𝐹𝑦))) = (𝑦𝐴 ↦ (𝐹𝑦)))
1815recnd 11279 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℂ)
19 simpl 481 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
2019feqmptd 6966 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
21 cjf 15092 . . . . . . . . . . . . 13 ∗:ℂ⟶ℂ
2221a1i 11 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗:ℂ⟶ℂ)
2322feqmptd 6966 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
24 fveq2 6896 . . . . . . . . . . 11 (𝑧 = (𝐹𝑦) → (∗‘𝑧) = (∗‘(𝐹𝑦)))
2518, 20, 23, 24fmptco 7138 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑦𝐴 ↦ (∗‘(𝐹𝑦))))
2617, 25, 203eqtr4d 2775 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = 𝐹)
2726oveq2d 7435 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (ℝ D 𝐹))
2813, 27eqtr3d 2767 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (ℝ D 𝐹))
2928fveq1d 6898 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
3029adantr 479 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
318, 30eqtr3d 2767 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) = ((ℝ D 𝐹)‘𝑥))
325, 31cjrebd 15190 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
3332ralrimiva 3135 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ)
34 ffnfv 7128 . 2 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ ((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ))
353, 33, 34sylanbrc 581 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  wss 3944  cmpt 5232  dom cdm 5678  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  cc 11143  cr 11144  ccj 15084   D cdv 25841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9441  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-icc 13371  df-fz 13525  df-seq 14008  df-exp 14068  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17189  df-plusg 17254  df-mulr 17255  df-starv 17256  df-tset 17260  df-ple 17261  df-ds 17263  df-unif 17264  df-rest 17412  df-topn 17413  df-topgen 17433  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22845  df-topon 22862  df-topsp 22884  df-bases 22898  df-cld 22972  df-ntr 22973  df-cls 22974  df-nei 23051  df-lp 23089  df-perf 23090  df-cn 23180  df-cnp 23181  df-haus 23268  df-fil 23799  df-fm 23891  df-flim 23892  df-flf 23893  df-xms 24275  df-ms 24276  df-cncf 24847  df-limc 25844  df-dv 25845
This theorem is referenced by:  dvnfre  25933  dvferm1lem  25965  dvferm1  25966  dvferm2lem  25967  dvferm2  25968  dvferm  25969  c1lip2  25980  dvle  25989  dvivthlem1  25990  dvivth  25992  dvne0  25993  dvfsumle  26003  dvfsumleOLD  26004  dvfsumge  26005  dvmptrecl  26007  dvbdfbdioolem1  45456  dvbdfbdioolem2  45457  ioodvbdlimc1lem1  45459  ioodvbdlimc1lem2  45460  ioodvbdlimc2lem  45462  fourierdlem58  45692  fourierdlem59  45693  fourierdlem60  45694  fourierdlem61  45695  fourierdlem94  45728  fourierdlem97  45731  fourierdlem112  45746  fourierdlem113  45747
  Copyright terms: Public domain W3C validator