![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfre | Structured version Visualization version GIF version |
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvfre | ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvf 25956 | . . 3 ⊢ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ | |
2 | ffn 6736 | . . 3 ⊢ ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹)) | |
3 | 1, 2 | mp1i 13 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹) Fn dom (ℝ D 𝐹)) |
4 | 1 | ffvelcdmi 7102 | . . . . 5 ⊢ (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
5 | 4 | adantl 481 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹)) | |
7 | fvco3 7007 | . . . . . 6 ⊢ (((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))) | |
8 | 1, 6, 7 | sylancr 587 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))) |
9 | ax-resscn 11209 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℂ | |
10 | fss 6752 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
12 | dvcj 26002 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) | |
13 | 11, 12 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) |
14 | ffvelcdm 7100 | . . . . . . . . . . . . 13 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) | |
15 | 14 | adantlr 715 | . . . . . . . . . . . 12 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
16 | 15 | cjred 15261 | . . . . . . . . . . 11 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∗‘(𝐹‘𝑦)) = (𝐹‘𝑦)) |
17 | 16 | mpteq2dva 5247 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
18 | 15 | recnd 11286 | . . . . . . . . . . 11 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℂ) |
19 | simpl 482 | . . . . . . . . . . . 12 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ) | |
20 | 19 | feqmptd 6976 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
21 | cjf 15139 | . . . . . . . . . . . . 13 ⊢ ∗:ℂ⟶ℂ | |
22 | 21 | a1i 11 | . . . . . . . . . . . 12 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗:ℂ⟶ℂ) |
23 | 22 | feqmptd 6976 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧))) |
24 | fveq2 6906 | . . . . . . . . . . 11 ⊢ (𝑧 = (𝐹‘𝑦) → (∗‘𝑧) = (∗‘(𝐹‘𝑦))) | |
25 | 18, 20, 23, 24 | fmptco 7148 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦)))) |
26 | 17, 25, 20 | 3eqtr4d 2784 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = 𝐹) |
27 | 26 | oveq2d 7446 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (ℝ D 𝐹)) |
28 | 13, 27 | eqtr3d 2776 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (ℝ D 𝐹)) |
29 | 28 | fveq1d 6908 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) |
30 | 29 | adantr 480 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) |
31 | 8, 30 | eqtr3d 2776 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) = ((ℝ D 𝐹)‘𝑥)) |
32 | 5, 31 | cjrebd 15237 | . . 3 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
33 | 32 | ralrimiva 3143 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
34 | ffnfv 7138 | . 2 ⊢ ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ ((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ)) | |
35 | 3, 33, 34 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ↦ cmpt 5230 dom cdm 5688 ∘ ccom 5692 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 ∗ccj 15131 D cdv 25912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fi 9448 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-icc 13390 df-fz 13544 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17468 df-topn 17469 df-topgen 17489 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-cncf 24917 df-limc 25915 df-dv 25916 |
This theorem is referenced by: dvnfre 26004 dvferm1lem 26036 dvferm1 26037 dvferm2lem 26038 dvferm2 26039 dvferm 26040 c1lip2 26051 dvle 26060 dvivthlem1 26061 dvivth 26063 dvne0 26064 dvfsumle 26074 dvfsumleOLD 26075 dvfsumge 26076 dvmptrecl 26078 dvbdfbdioolem1 45883 dvbdfbdioolem2 45884 ioodvbdlimc1lem1 45886 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 fourierdlem58 46119 fourierdlem59 46120 fourierdlem60 46121 fourierdlem61 46122 fourierdlem94 46155 fourierdlem97 46158 fourierdlem112 46173 fourierdlem113 46174 |
Copyright terms: Public domain | W3C validator |