| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvfre | Structured version Visualization version GIF version | ||
| Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| dvfre | ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf 25824 | . . 3 ⊢ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ | |
| 2 | ffn 6656 | . . 3 ⊢ ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹)) | |
| 3 | 1, 2 | mp1i 13 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹) Fn dom (ℝ D 𝐹)) |
| 4 | 1 | ffvelcdmi 7021 | . . . . 5 ⊢ (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹)) | |
| 7 | fvco3 6926 | . . . . . 6 ⊢ (((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))) | |
| 8 | 1, 6, 7 | sylancr 587 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))) |
| 9 | ax-resscn 11085 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℂ | |
| 10 | fss 6672 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
| 12 | dvcj 25870 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) | |
| 13 | 11, 12 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) |
| 14 | ffvelcdm 7019 | . . . . . . . . . . . . 13 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) | |
| 15 | 14 | adantlr 715 | . . . . . . . . . . . 12 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 16 | 15 | cjred 15151 | . . . . . . . . . . 11 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∗‘(𝐹‘𝑦)) = (𝐹‘𝑦)) |
| 17 | 16 | mpteq2dva 5188 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 18 | 15 | recnd 11162 | . . . . . . . . . . 11 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℂ) |
| 19 | simpl 482 | . . . . . . . . . . . 12 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ) | |
| 20 | 19 | feqmptd 6895 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 21 | cjf 15029 | . . . . . . . . . . . . 13 ⊢ ∗:ℂ⟶ℂ | |
| 22 | 21 | a1i 11 | . . . . . . . . . . . 12 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗:ℂ⟶ℂ) |
| 23 | 22 | feqmptd 6895 | . . . . . . . . . . 11 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧))) |
| 24 | fveq2 6826 | . . . . . . . . . . 11 ⊢ (𝑧 = (𝐹‘𝑦) → (∗‘𝑧) = (∗‘(𝐹‘𝑦))) | |
| 25 | 18, 20, 23, 24 | fmptco 7067 | . . . . . . . . . 10 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ (∗‘(𝐹‘𝑦)))) |
| 26 | 17, 25, 20 | 3eqtr4d 2774 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ 𝐹) = 𝐹) |
| 27 | 26 | oveq2d 7369 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (ℝ D 𝐹)) |
| 28 | 13, 27 | eqtr3d 2766 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (ℝ D 𝐹)) |
| 29 | 28 | fveq1d 6828 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) |
| 30 | 29 | adantr 480 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((∗ ∘ (ℝ D 𝐹))‘𝑥) = ((ℝ D 𝐹)‘𝑥)) |
| 31 | 8, 30 | eqtr3d 2766 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) = ((ℝ D 𝐹)‘𝑥)) |
| 32 | 5, 31 | cjrebd 15127 | . . 3 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 33 | 32 | ralrimiva 3121 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
| 34 | ffnfv 7057 | . 2 ⊢ ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ ((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ ∀𝑥 ∈ dom (ℝ D 𝐹)((ℝ D 𝐹)‘𝑥) ∈ ℝ)) | |
| 35 | 3, 33, 34 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ↦ cmpt 5176 dom cdm 5623 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 ∗ccj 15021 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-icc 13273 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-cncf 24787 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: dvnfre 25872 dvferm1lem 25904 dvferm1 25905 dvferm2lem 25906 dvferm2 25907 dvferm 25908 c1lip2 25919 dvle 25928 dvivthlem1 25929 dvivth 25931 dvne0 25932 dvfsumle 25942 dvfsumleOLD 25943 dvfsumge 25944 dvmptrecl 25946 dvbdfbdioolem1 45913 dvbdfbdioolem2 45914 ioodvbdlimc1lem1 45916 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 fourierdlem58 46149 fourierdlem59 46150 fourierdlem60 46151 fourierdlem61 46152 fourierdlem94 46185 fourierdlem97 46188 fourierdlem112 46203 fourierdlem113 46204 |
| Copyright terms: Public domain | W3C validator |