MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coecj Structured version   Visualization version   GIF version

Theorem coecj 25522
Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
coecj.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coecj (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))

Proof of Theorem coecj
Dummy variables 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.1 . . 3 𝑁 = (deg‘𝐹)
2 plycj.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
3 cjcl 14895 . . . 4 (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ)
43adantl 482 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ)
5 plyssc 25444 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
65sseli 3927 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
71, 2, 4, 6plycj 25521 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 dgrcl 25477 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
91, 8eqeltrid 2842 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
10 cjf 14894 . . 3 ∗:ℂ⟶ℂ
11 coecj.3 . . . 4 𝐴 = (coeff‘𝐹)
1211coef3 25476 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
13 fco 6662 . . 3 ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
1410, 12, 13sylancr 587 . 2 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
15 fvco3 6907 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
1612, 15sylan 580 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
17 cj0 14948 . . . . . . . . . 10 (∗‘0) = 0
1817eqcomi 2746 . . . . . . . . 9 0 = (∗‘0)
1918a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0))
2016, 19eqeq12d 2753 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴𝑘)) = (∗‘0)))
2112ffvelcdmda 7001 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
22 0cnd 11048 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ)
23 cj11 14952 . . . . . . . 8 (((𝐴𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2421, 22, 23syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2520, 24bitrd 278 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴𝑘) = 0))
2625necon3bid 2986 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
2711, 1dgrub2 25479 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
28 plyco0 25436 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
299, 12, 28syl2anc 584 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
3027, 29mpbid 231 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3130r19.21bi 3231 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3226, 31sylbid 239 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
3332ralrimiva 3140 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
34 plyco0 25436 . . . 4 ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
359, 14, 34syl2anc 584 . . 3 (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
3633, 35mpbird 256 . 2 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0})
371, 2, 11plycjlem 25520 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
387, 9, 14, 36, 37coeeq 25471 1 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  wral 3062  {csn 4571   class class class wbr 5087  cima 5611  ccom 5612  wf 6462  cfv 6466  (class class class)co 7317  cc 10949  0cc0 10951  1c1 10952   + caddc 10954  cle 11090  0cn0 12313  cuz 12662  ccj 14886  Polycply 25428  coeffccoe 25430  degcdgr 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-pm 8668  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-sup 9278  df-inf 9279  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-z 12400  df-uz 12663  df-rp 12811  df-fz 13320  df-fzo 13463  df-fl 13592  df-seq 13802  df-exp 13863  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-rlim 15277  df-sum 15477  df-0p 24917  df-ply 25432  df-coe 25434  df-dgr 25435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator