Step | Hyp | Ref
| Expression |
1 | | plycj.1 |
. . 3
β’ π = (degβπΉ) |
2 | | plycj.2 |
. . 3
β’ πΊ = ((β β πΉ) β
β) |
3 | | cjcl 15056 |
. . . 4
β’ (π₯ β β β
(ββπ₯) β
β) |
4 | 3 | adantl 480 |
. . 3
β’ ((πΉ β (Polyβπ) β§ π₯ β β) β (ββπ₯) β
β) |
5 | | plyssc 25949 |
. . . 4
β’
(Polyβπ)
β (Polyββ) |
6 | 5 | sseli 3977 |
. . 3
β’ (πΉ β (Polyβπ) β πΉ β
(Polyββ)) |
7 | 1, 2, 4, 6 | plycj 26027 |
. 2
β’ (πΉ β (Polyβπ) β πΊ β
(Polyββ)) |
8 | | dgrcl 25982 |
. . 3
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
9 | 1, 8 | eqeltrid 2835 |
. 2
β’ (πΉ β (Polyβπ) β π β
β0) |
10 | | cjf 15055 |
. . 3
β’
β:ββΆβ |
11 | | coecj.3 |
. . . 4
β’ π΄ = (coeffβπΉ) |
12 | 11 | coef3 25981 |
. . 3
β’ (πΉ β (Polyβπ) β π΄:β0βΆβ) |
13 | | fco 6740 |
. . 3
β’
((β:ββΆβ β§ π΄:β0βΆβ) β
(β β π΄):β0βΆβ) |
14 | 10, 12, 13 | sylancr 585 |
. 2
β’ (πΉ β (Polyβπ) β (β β π΄):β0βΆβ) |
15 | | fvco3 6989 |
. . . . . . . . 9
β’ ((π΄:β0βΆβ β§
π β
β0) β ((β β π΄)βπ) = (ββ(π΄βπ))) |
16 | 12, 15 | sylan 578 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ π β β0) β
((β β π΄)βπ) = (ββ(π΄βπ))) |
17 | | cj0 15109 |
. . . . . . . . . 10
β’
(ββ0) = 0 |
18 | 17 | eqcomi 2739 |
. . . . . . . . 9
β’ 0 =
(ββ0) |
19 | 18 | a1i 11 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ π β β0) β 0 =
(ββ0)) |
20 | 16, 19 | eqeq12d 2746 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ π β β0) β
(((β β π΄)βπ) = 0 β (ββ(π΄βπ)) = (ββ0))) |
21 | 12 | ffvelcdmda 7085 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ π β β0) β (π΄βπ) β β) |
22 | | 0cnd 11211 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ π β β0) β 0 β
β) |
23 | | cj11 15113 |
. . . . . . . 8
β’ (((π΄βπ) β β β§ 0 β β)
β ((ββ(π΄βπ)) = (ββ0) β (π΄βπ) = 0)) |
24 | 21, 22, 23 | syl2anc 582 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ π β β0) β
((ββ(π΄βπ)) = (ββ0) β (π΄βπ) = 0)) |
25 | 20, 24 | bitrd 278 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ π β β0) β
(((β β π΄)βπ) = 0 β (π΄βπ) = 0)) |
26 | 25 | necon3bid 2983 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ π β β0) β
(((β β π΄)βπ) β 0 β (π΄βπ) β 0)) |
27 | 11, 1 | dgrub2 25984 |
. . . . . . 7
β’ (πΉ β (Polyβπ) β (π΄ β
(β€β₯β(π + 1))) = {0}) |
28 | | plyco0 25941 |
. . . . . . . 8
β’ ((π β β0
β§ π΄:β0βΆβ) β
((π΄ β
(β€β₯β(π + 1))) = {0} β βπ β β0
((π΄βπ) β 0 β π β€ π))) |
29 | 9, 12, 28 | syl2anc 582 |
. . . . . . 7
β’ (πΉ β (Polyβπ) β ((π΄ β
(β€β₯β(π + 1))) = {0} β βπ β β0
((π΄βπ) β 0 β π β€ π))) |
30 | 27, 29 | mpbid 231 |
. . . . . 6
β’ (πΉ β (Polyβπ) β βπ β β0
((π΄βπ) β 0 β π β€ π)) |
31 | 30 | r19.21bi 3246 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ π β β0) β ((π΄βπ) β 0 β π β€ π)) |
32 | 26, 31 | sylbid 239 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ π β β0) β
(((β β π΄)βπ) β 0 β π β€ π)) |
33 | 32 | ralrimiva 3144 |
. . 3
β’ (πΉ β (Polyβπ) β βπ β β0
(((β β π΄)βπ) β 0 β π β€ π)) |
34 | | plyco0 25941 |
. . . 4
β’ ((π β β0
β§ (β β π΄):β0βΆβ) β
(((β β π΄)
β (β€β₯β(π + 1))) = {0} β βπ β β0
(((β β π΄)βπ) β 0 β π β€ π))) |
35 | 9, 14, 34 | syl2anc 582 |
. . 3
β’ (πΉ β (Polyβπ) β (((β β
π΄) β
(β€β₯β(π + 1))) = {0} β βπ β β0
(((β β π΄)βπ) β 0 β π β€ π))) |
36 | 33, 35 | mpbird 256 |
. 2
β’ (πΉ β (Polyβπ) β ((β β
π΄) β
(β€β₯β(π + 1))) = {0}) |
37 | 1, 2, 11 | plycjlem 26026 |
. 2
β’ (πΉ β (Polyβπ) β πΊ = (π§ β β β¦ Ξ£π β (0...π)(((β β π΄)βπ) Β· (π§βπ)))) |
38 | 7, 9, 14, 36, 37 | coeeq 25976 |
1
β’ (πΉ β (Polyβπ) β (coeffβπΊ) = (β β π΄)) |