| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coecj | Structured version Visualization version GIF version | ||
| Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| plycj.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
| coecj.3 | ⊢ 𝐴 = (coeff‘𝐹) |
| Ref | Expression |
|---|---|
| coecj | ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycj.2 | . . 3 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
| 2 | cjcl 15071 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
| 4 | plyssc 26105 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 5 | 4 | sseli 3942 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
| 6 | 1, 3, 5 | plycj 26183 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
| 7 | dgrcl 26138 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 8 | cjf 15070 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
| 9 | coecj.3 | . . . 4 ⊢ 𝐴 = (coeff‘𝐹) | |
| 10 | 9 | coef3 26137 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 11 | fco 6712 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ) | |
| 12 | 8, 10, 11 | sylancr 587 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ) |
| 13 | fvco3 6960 | . . . . . . . . 9 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) | |
| 14 | 10, 13 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
| 15 | cj0 15124 | . . . . . . . . . 10 ⊢ (∗‘0) = 0 | |
| 16 | 15 | eqcomi 2738 | . . . . . . . . 9 ⊢ 0 = (∗‘0) |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0)) |
| 18 | 14, 17 | eqeq12d 2745 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴‘𝑘)) = (∗‘0))) |
| 19 | 10 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 20 | 0cnd 11167 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ) | |
| 21 | cj11 15128 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) |
| 23 | 18, 22 | bitrd 279 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴‘𝑘) = 0)) |
| 24 | 23 | necon3bid 2969 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴‘𝑘) ≠ 0)) |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 26 | 9, 25 | dgrub2 26140 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘((deg‘𝐹) + 1))) = {0}) |
| 27 | plyco0 26097 | . . . . . . . 8 ⊢ (((deg‘𝐹) ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))) | |
| 28 | 7, 10, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ≥‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))) |
| 29 | 26, 28 | mpbid 232 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))) |
| 30 | 29 | r19.21bi 3229 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))) |
| 31 | 24, 30 | sylbid 240 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))) |
| 32 | 31 | ralrimiva 3125 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))) |
| 33 | plyco0 26097 | . . . 4 ⊢ (((deg‘𝐹) ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ≥‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))) | |
| 34 | 7, 12, 33 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ≥‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))) |
| 35 | 32, 34 | mpbird 257 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ≥‘((deg‘𝐹) + 1))) = {0}) |
| 36 | 25, 1, 9 | plycjlem 26182 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑦 ∈ ℂ ↦ Σ𝑧 ∈ (0...(deg‘𝐹))(((∗ ∘ 𝐴)‘𝑧) · (𝑦↑𝑧)))) |
| 37 | 6, 7, 12, 35, 36 | coeeq 26132 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {csn 4589 class class class wbr 5107 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 ≤ cle 11209 ℕ0cn0 12442 ℤ≥cuz 12793 ∗ccj 15062 Polycply 26089 coeffccoe 26091 degcdgr 26092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-coe 26095 df-dgr 26096 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |