MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coecj Structured version   Visualization version   GIF version

Theorem coecj 26206
Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
coecj.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coecj (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))

Proof of Theorem coecj
Dummy variables 𝑥 𝑘 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 15007 . . . 4 (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ)
32adantl 481 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ)
4 plyssc 26127 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
54sseli 3925 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
61, 3, 5plycj 26205 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
7 dgrcl 26160 . 2 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
8 cjf 15006 . . 3 ∗:ℂ⟶ℂ
9 coecj.3 . . . 4 𝐴 = (coeff‘𝐹)
109coef3 26159 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
11 fco 6670 . . 3 ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
128, 10, 11sylancr 587 . 2 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
13 fvco3 6916 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
1410, 13sylan 580 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
15 cj0 15060 . . . . . . . . . 10 (∗‘0) = 0
1615eqcomi 2740 . . . . . . . . 9 0 = (∗‘0)
1716a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0))
1814, 17eqeq12d 2747 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴𝑘)) = (∗‘0)))
1910ffvelcdmda 7012 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
20 0cnd 11100 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ)
21 cj11 15064 . . . . . . . 8 (((𝐴𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2219, 20, 21syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2318, 22bitrd 279 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴𝑘) = 0))
2423necon3bid 2972 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
25 eqid 2731 . . . . . . . 8 (deg‘𝐹) = (deg‘𝐹)
269, 25dgrub2 26162 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘((deg‘𝐹) + 1))) = {0})
27 plyco0 26119 . . . . . . . 8 (((deg‘𝐹) ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))))
287, 10, 27syl2anc 584 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))))
2926, 28mpbid 232 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))
3029r19.21bi 3224 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))
3124, 30sylbid 240 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))
3231ralrimiva 3124 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹)))
33 plyco0 26119 . . . 4 (((deg‘𝐹) ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))))
347, 12, 33syl2anc 584 . . 3 (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ‘((deg‘𝐹) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘𝐹))))
3532, 34mpbird 257 . 2 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ‘((deg‘𝐹) + 1))) = {0})
3625, 1, 9plycjlem 26204 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑦 ∈ ℂ ↦ Σ𝑧 ∈ (0...(deg‘𝐹))(((∗ ∘ 𝐴)‘𝑧) · (𝑦𝑧))))
376, 7, 12, 35, 36coeeq 26154 1 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {csn 4571   class class class wbr 5086  cima 5614  ccom 5615  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004  cle 11142  0cn0 12376  cuz 12727  ccj 14998  Polycply 26111  coeffccoe 26113  degcdgr 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-0p 25593  df-ply 26115  df-coe 26117  df-dgr 26118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator