![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coecj | Structured version Visualization version GIF version |
Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
plycj.1 | ⊢ 𝑁 = (deg‘𝐹) |
plycj.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
coecj.3 | ⊢ 𝐴 = (coeff‘𝐹) |
Ref | Expression |
---|---|
coecj | ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plycj.1 | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
2 | plycj.2 | . . 3 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
3 | cjcl 15154 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
5 | plyssc 26259 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
6 | 5 | sseli 4004 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
7 | 1, 2, 4, 6 | plycj 26337 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
8 | dgrcl 26292 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
9 | 1, 8 | eqeltrid 2848 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
10 | cjf 15153 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
11 | coecj.3 | . . . 4 ⊢ 𝐴 = (coeff‘𝐹) | |
12 | 11 | coef3 26291 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
13 | fco 6771 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ) | |
14 | 10, 12, 13 | sylancr 586 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ) |
15 | fvco3 7021 | . . . . . . . . 9 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) | |
16 | 12, 15 | sylan 579 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
17 | cj0 15207 | . . . . . . . . . 10 ⊢ (∗‘0) = 0 | |
18 | 17 | eqcomi 2749 | . . . . . . . . 9 ⊢ 0 = (∗‘0) |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0)) |
20 | 16, 19 | eqeq12d 2756 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴‘𝑘)) = (∗‘0))) |
21 | 12 | ffvelcdmda 7118 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
22 | 0cnd 11283 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ) | |
23 | cj11 15211 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) | |
24 | 21, 22, 23 | syl2anc 583 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) |
25 | 20, 24 | bitrd 279 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴‘𝑘) = 0)) |
26 | 25 | necon3bid 2991 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴‘𝑘) ≠ 0)) |
27 | 11, 1 | dgrub2 26294 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
28 | plyco0 26251 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
29 | 9, 12, 28 | syl2anc 583 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
30 | 27, 29 | mpbid 232 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
31 | 30 | r19.21bi 3257 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
32 | 26, 31 | sylbid 240 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
33 | 32 | ralrimiva 3152 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
34 | plyco0 26251 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
35 | 9, 14, 34 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
36 | 33, 35 | mpbird 257 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
37 | 1, 2, 11 | plycjlem 26336 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
38 | 7, 9, 14, 36, 37 | coeeq 26286 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {csn 4648 class class class wbr 5166 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 ℕ0cn0 12553 ℤ≥cuz 12903 ∗ccj 15145 Polycply 26243 coeffccoe 26245 degcdgr 26246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-0p 25724 df-ply 26247 df-coe 26249 df-dgr 26250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |