Step | Hyp | Ref
| Expression |
1 | | plycj.2 |
. . 3
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
2 | | cjcl 14816 |
. . . . 5
⊢ (𝑧 ∈ ℂ →
(∗‘𝑧) ∈
ℂ) |
3 | 2 | adantl 482 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈
ℂ) |
4 | | cjf 14815 |
. . . . . 6
⊢
∗:ℂ⟶ℂ |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) →
∗:ℂ⟶ℂ) |
6 | 5 | feqmptd 6837 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → ∗ = (𝑧 ∈ ℂ ↦
(∗‘𝑧))) |
7 | | fzfid 13693 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) |
8 | | plycjlem.3 |
. . . . . . . . . 10
⊢ 𝐴 = (coeff‘𝐹) |
9 | 8 | coef3 25393 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
11 | | elfznn0 13349 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
12 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
13 | 10, 11, 12 | syl2an 596 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
14 | | expcl 13800 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑥↑𝑘) ∈
ℂ) |
15 | 11, 14 | sylan2 593 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝑥↑𝑘) ∈ ℂ) |
16 | 15 | adantll 711 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥↑𝑘) ∈ ℂ) |
17 | 13, 16 | mulcld 10995 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
18 | 7, 17 | fsumcl 15445 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
19 | | plycj.1 |
. . . . . 6
⊢ 𝑁 = (deg‘𝐹) |
20 | 8, 19 | coeid 25399 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
21 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
22 | 18, 20, 6, 21 | fmptco 7001 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))))) |
23 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = (∗‘𝑧) → (𝑥↑𝑘) = ((∗‘𝑧)↑𝑘)) |
24 | 23 | oveq2d 7291 |
. . . . . 6
⊢ (𝑥 = (∗‘𝑧) → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
25 | 24 | sumeq2sdv 15416 |
. . . . 5
⊢ (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
26 | 25 | fveq2d 6778 |
. . . 4
⊢ (𝑥 = (∗‘𝑧) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
27 | 3, 6, 22, 26 | fmptco 7001 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘
𝐹) ∘ ∗) =
(𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
28 | 1, 27 | eqtrid 2790 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
29 | | fzfid 13693 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
30 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
31 | 30, 11, 12 | syl2an 596 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
32 | | expcl 13800 |
. . . . . . 7
⊢
(((∗‘𝑧)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((∗‘𝑧)↑𝑘) ∈ ℂ) |
33 | 3, 11, 32 | syl2an 596 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ) |
34 | 31, 33 | mulcld 10995 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ) |
35 | 29, 34 | fsumcj 15522 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
36 | 31, 33 | cjmuld 14932 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
37 | | fvco3 6867 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
38 | 30, 11, 37 | syl2an 596 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
39 | | cjexp 14861 |
. . . . . . . . 9
⊢
(((∗‘𝑧)
∈ ℂ ∧ 𝑘
∈ ℕ0) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘)) |
40 | 3, 11, 39 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘)) |
41 | | cjcj 14851 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ →
(∗‘(∗‘𝑧)) = 𝑧) |
42 | 41 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘(∗‘𝑧)) = 𝑧) |
43 | 42 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
((∗‘(∗‘𝑧))↑𝑘) = (𝑧↑𝑘)) |
44 | 40, 43 | eqtr2d 2779 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) = (∗‘((∗‘𝑧)↑𝑘))) |
45 | 38, 44 | oveq12d 7293 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
46 | 36, 45 | eqtr4d 2781 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
47 | 46 | sumeq2dv 15415 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
48 | 35, 47 | eqtrd 2778 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
49 | 48 | mpteq2dva 5174 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
50 | 28, 49 | eqtrd 2778 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |