MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjlem Structured version   Visualization version   GIF version

Theorem plycjlem 26234
Description: Lemma for plycj 26235 and coecj 26236. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycjlem.1 𝑁 = (deg‘𝐹)
plycjlem.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlem.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
plycjlem (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 15124 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 15123 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∗:ℂ⟶ℂ)
65feqmptd 6947 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 fzfid 13991 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
8 plycjlem.3 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
98coef3 26189 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
109adantr 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
11 elfznn0 13637 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
12 ffvelcdm 7071 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1310, 11, 12syl2an 596 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
14 expcl 14097 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
1511, 14sylan2 593 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1615adantll 714 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1713, 16mulcld 11255 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
187, 17fsumcl 15749 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
19 plycjlem.1 . . . . . 6 𝑁 = (deg‘𝐹)
208, 19coeid 26195 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
21 fveq2 6876 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
2218, 20, 6, 21fmptco 7119 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
23 oveq1 7412 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
2423oveq2d 7421 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2524sumeq2sdv 15719 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2625fveq2d 6880 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
273, 6, 22, 26fmptco 7119 . . 3 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
281, 27eqtrid 2782 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
29 fzfid 13991 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
309adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
3130, 11, 12syl2an 596 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
32 expcl 14097 . . . . . . 7 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
333, 11, 32syl2an 596 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
3431, 33mulcld 11255 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
3529, 34fsumcj 15826 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
3631, 33cjmuld 15240 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
37 fvco3 6978 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
3830, 11, 37syl2an 596 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
39 cjexp 15169 . . . . . . . . 9 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
403, 11, 39syl2an 596 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
41 cjcj 15159 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
4241ad2antlr 727 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
4342oveq1d 7420 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
4440, 43eqtr2d 2771 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
4538, 44oveq12d 7423 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
4636, 45eqtr4d 2773 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4746sumeq2dv 15718 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4835, 47eqtrd 2770 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4948mpteq2dva 5214 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
5028, 49eqtrd 2770 1 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5201  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   · cmul 11134  0cn0 12501  ...cfz 13524  cexp 14079  ccj 15115  Σcsu 15702  Polycply 26141  coeffccoe 26143  degcdgr 26144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-0p 25623  df-ply 26145  df-coe 26147  df-dgr 26148
This theorem is referenced by:  plycj  26235  coecj  26236  plycjOLD  26237  coecjOLD  26238
  Copyright terms: Public domain W3C validator