MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjlem Structured version   Visualization version   GIF version

Theorem plycjlem 26131
Description: Lemma for plycj 26132 and coecj 26133. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlem.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
plycjlem (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycj.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 15049 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 15048 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∗:ℂ⟶ℂ)
65feqmptd 6950 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 fzfid 13935 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
8 plycjlem.3 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
98coef3 26086 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
109adantr 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
11 elfznn0 13591 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
12 ffvelcdm 7073 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1310, 11, 12syl2an 595 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
14 expcl 14042 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
1511, 14sylan2 592 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1615adantll 711 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1713, 16mulcld 11231 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
187, 17fsumcl 15676 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
19 plycj.1 . . . . . 6 𝑁 = (deg‘𝐹)
208, 19coeid 26092 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
21 fveq2 6881 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
2218, 20, 6, 21fmptco 7119 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
23 oveq1 7408 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
2423oveq2d 7417 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2524sumeq2sdv 15647 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2625fveq2d 6885 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
273, 6, 22, 26fmptco 7119 . . 3 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
281, 27eqtrid 2776 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
29 fzfid 13935 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
309adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
3130, 11, 12syl2an 595 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
32 expcl 14042 . . . . . . 7 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
333, 11, 32syl2an 595 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
3431, 33mulcld 11231 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
3529, 34fsumcj 15753 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
3631, 33cjmuld 15165 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
37 fvco3 6980 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
3830, 11, 37syl2an 595 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
39 cjexp 15094 . . . . . . . . 9 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
403, 11, 39syl2an 595 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
41 cjcj 15084 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
4241ad2antlr 724 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
4342oveq1d 7416 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
4440, 43eqtr2d 2765 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
4538, 44oveq12d 7419 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
4636, 45eqtr4d 2767 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4746sumeq2dv 15646 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4835, 47eqtrd 2764 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4948mpteq2dva 5238 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
5028, 49eqtrd 2764 1 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cmpt 5221  ccom 5670  wf 6529  cfv 6533  (class class class)co 7401  cc 11104  0cc0 11106   · cmul 11111  0cn0 12469  ...cfz 13481  cexp 14024  ccj 15040  Σcsu 15629  Polycply 26038  coeffccoe 26040  degcdgr 26041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-0p 25521  df-ply 26042  df-coe 26044  df-dgr 26045
This theorem is referenced by:  plycj  26132  coecj  26133
  Copyright terms: Public domain W3C validator