MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mndlem Structured version   Visualization version   GIF version

Theorem smndex1mndlem 18868
Description: Lemma for smndex1mnd 18869 and smndex1id 18870. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mndlem (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)   𝑋(𝑥)

Proof of Theorem smndex1mndlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elun 4149 . . 3 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
2 elsni 4649 . . . . 5 (𝑋 ∈ {𝐼} → 𝑋 = 𝐼)
3 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
4 smndex1ibas.n . . . . . . . 8 𝑁 ∈ ℕ
5 smndex1ibas.i . . . . . . . 8 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
63, 4, 5smndex1iidm 18860 . . . . . . 7 (𝐼𝐼) = 𝐼
7 coeq2 5865 . . . . . . 7 (𝑋 = 𝐼 → (𝐼𝑋) = (𝐼𝐼))
8 id 22 . . . . . . 7 (𝑋 = 𝐼𝑋 = 𝐼)
96, 7, 83eqtr4a 2794 . . . . . 6 (𝑋 = 𝐼 → (𝐼𝑋) = 𝑋)
10 coeq1 5864 . . . . . . 7 (𝑋 = 𝐼 → (𝑋𝐼) = (𝐼𝐼))
116, 10, 83eqtr4a 2794 . . . . . 6 (𝑋 = 𝐼 → (𝑋𝐼) = 𝑋)
129, 11jca 510 . . . . 5 (𝑋 = 𝐼 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
132, 12syl 17 . . . 4 (𝑋 ∈ {𝐼} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
14 eliun 5004 . . . . 5 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)})
15 fveq2 6902 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
1615sneqd 4644 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
1716eleq2d 2815 . . . . . . 7 (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺𝑛)} ↔ 𝑋 ∈ {(𝐺𝑘)}))
1817cbvrexvw 3233 . . . . . 6 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)})
19 elsni 4649 . . . . . . . . 9 (𝑋 ∈ {(𝐺𝑘)} → 𝑋 = (𝐺𝑘))
20 smndex1ibas.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
213, 4, 5, 20smndex1igid 18863 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
223, 4, 5smndex1ibas 18859 . . . . . . . . . . . 12 𝐼 ∈ (Base‘𝑀)
233, 4, 5, 20smndex1gid 18862 . . . . . . . . . . . 12 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2422, 23mpan 688 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2521, 24jca 510 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
26 coeq2 5865 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝐼𝑋) = (𝐼 ∘ (𝐺𝑘)))
27 id 22 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → 𝑋 = (𝐺𝑘))
2826, 27eqeq12d 2744 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝐼𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘)))
29 coeq1 5864 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝑋𝐼) = ((𝐺𝑘) ∘ 𝐼))
3029, 27eqeq12d 2744 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝑋𝐼) = 𝑋 ↔ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
3128, 30anbi12d 630 . . . . . . . . . 10 (𝑋 = (𝐺𝑘) → (((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))))
3225, 31imbitrrid 245 . . . . . . . . 9 (𝑋 = (𝐺𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3319, 32syl 17 . . . . . . . 8 (𝑋 ∈ {(𝐺𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3433impcom 406 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺𝑘)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3534rexlimiva 3144 . . . . . 6 (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3618, 35sylbi 216 . . . . 5 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3714, 36sylbi 216 . . . 4 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3813, 37jaoi 855 . . 3 ((𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
391, 38sylbi 216 . 2 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
40 smndex1mgm.b . 2 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
4139, 40eleq2s 2847 1 (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wrex 3067  cun 3947  {csn 4632   ciun 5000  cmpt 5235  ccom 5686  cfv 6553  (class class class)co 7426  0cc0 11146  cn 12250  0cn0 12510  ..^cfzo 13667   mod cmo 13874  Basecbs 17187  s cress 17216  EndoFMndcefmnd 18827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-tset 17259  df-efmnd 18828
This theorem is referenced by:  smndex1mnd  18869  smndex1id  18870
  Copyright terms: Public domain W3C validator