MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mndlem Structured version   Visualization version   GIF version

Theorem smndex1mndlem 18812
Description: Lemma for smndex1mnd 18813 and smndex1id 18814. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mndlem (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)   𝑋(𝑥)

Proof of Theorem smndex1mndlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elun 4112 . . 3 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
2 elsni 4602 . . . . 5 (𝑋 ∈ {𝐼} → 𝑋 = 𝐼)
3 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
4 smndex1ibas.n . . . . . . . 8 𝑁 ∈ ℕ
5 smndex1ibas.i . . . . . . . 8 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
63, 4, 5smndex1iidm 18804 . . . . . . 7 (𝐼𝐼) = 𝐼
7 coeq2 5812 . . . . . . 7 (𝑋 = 𝐼 → (𝐼𝑋) = (𝐼𝐼))
8 id 22 . . . . . . 7 (𝑋 = 𝐼𝑋 = 𝐼)
96, 7, 83eqtr4a 2790 . . . . . 6 (𝑋 = 𝐼 → (𝐼𝑋) = 𝑋)
10 coeq1 5811 . . . . . . 7 (𝑋 = 𝐼 → (𝑋𝐼) = (𝐼𝐼))
116, 10, 83eqtr4a 2790 . . . . . 6 (𝑋 = 𝐼 → (𝑋𝐼) = 𝑋)
129, 11jca 511 . . . . 5 (𝑋 = 𝐼 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
132, 12syl 17 . . . 4 (𝑋 ∈ {𝐼} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
14 eliun 4955 . . . . 5 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)})
15 fveq2 6840 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
1615sneqd 4597 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
1716eleq2d 2814 . . . . . . 7 (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺𝑛)} ↔ 𝑋 ∈ {(𝐺𝑘)}))
1817cbvrexvw 3214 . . . . . 6 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)})
19 elsni 4602 . . . . . . . . 9 (𝑋 ∈ {(𝐺𝑘)} → 𝑋 = (𝐺𝑘))
20 smndex1ibas.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
213, 4, 5, 20smndex1igid 18807 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
223, 4, 5smndex1ibas 18803 . . . . . . . . . . . 12 𝐼 ∈ (Base‘𝑀)
233, 4, 5, 20smndex1gid 18806 . . . . . . . . . . . 12 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2422, 23mpan 690 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2521, 24jca 511 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
26 coeq2 5812 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝐼𝑋) = (𝐼 ∘ (𝐺𝑘)))
27 id 22 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → 𝑋 = (𝐺𝑘))
2826, 27eqeq12d 2745 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝐼𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘)))
29 coeq1 5811 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝑋𝐼) = ((𝐺𝑘) ∘ 𝐼))
3029, 27eqeq12d 2745 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝑋𝐼) = 𝑋 ↔ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
3128, 30anbi12d 632 . . . . . . . . . 10 (𝑋 = (𝐺𝑘) → (((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))))
3225, 31imbitrrid 246 . . . . . . . . 9 (𝑋 = (𝐺𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3319, 32syl 17 . . . . . . . 8 (𝑋 ∈ {(𝐺𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3433impcom 407 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺𝑘)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3534rexlimiva 3126 . . . . . 6 (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3618, 35sylbi 217 . . . . 5 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3714, 36sylbi 217 . . . 4 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3813, 37jaoi 857 . . 3 ((𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
391, 38sylbi 217 . 2 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
40 smndex1mgm.b . 2 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
4139, 40eleq2s 2846 1 (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  cun 3909  {csn 4585   ciun 4951  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  0cc0 11044  cn 12162  0cn0 12418  ..^cfzo 13591   mod cmo 13807  Basecbs 17155  s cress 17176  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-tset 17215  df-efmnd 18772
This theorem is referenced by:  smndex1mnd  18813  smndex1id  18814
  Copyright terms: Public domain W3C validator