| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1mndlem | Structured version Visualization version GIF version | ||
| Description: Lemma for smndex1mnd 18813 and smndex1id 18814. (Contributed by AV, 16-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1mndlem | ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4098 | . . 3 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
| 2 | elsni 4588 | . . . . 5 ⊢ (𝑋 ∈ {𝐼} → 𝑋 = 𝐼) | |
| 3 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 4 | smndex1ibas.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 5 | smndex1ibas.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 6 | 3, 4, 5 | smndex1iidm 18804 | . . . . . . 7 ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
| 7 | coeq2 5793 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = (𝐼 ∘ 𝐼)) | |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → 𝑋 = 𝐼) | |
| 9 | 6, 7, 8 | 3eqtr4a 2792 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = 𝑋) |
| 10 | coeq1 5792 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = (𝐼 ∘ 𝐼)) | |
| 11 | 6, 10, 8 | 3eqtr4a 2792 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = 𝑋) |
| 12 | 9, 11 | jca 511 | . . . . 5 ⊢ (𝑋 = 𝐼 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝑋 ∈ {𝐼} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 14 | eliun 4940 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)}) | |
| 15 | fveq2 6817 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | |
| 16 | 15 | sneqd 4583 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
| 17 | 16 | eleq2d 2817 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺‘𝑛)} ↔ 𝑋 ∈ {(𝐺‘𝑘)})) |
| 18 | 17 | cbvrexvw 3211 | . . . . . 6 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)}) |
| 19 | elsni 4588 | . . . . . . . . 9 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → 𝑋 = (𝐺‘𝑘)) | |
| 20 | smndex1ibas.g | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 21 | 3, 4, 5, 20 | smndex1igid 18807 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
| 22 | 3, 4, 5 | smndex1ibas 18803 | . . . . . . . . . . . 12 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 23 | 3, 4, 5, 20 | smndex1gid 18806 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 24 | 22, 23 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 25 | 21, 24 | jca 511 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 26 | coeq2 5793 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝐼 ∘ 𝑋) = (𝐼 ∘ (𝐺‘𝑘))) | |
| 27 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → 𝑋 = (𝐺‘𝑘)) | |
| 28 | 26, 27 | eqeq12d 2747 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝐼 ∘ 𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘))) |
| 29 | coeq1 5792 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑋 ∘ 𝐼) = ((𝐺‘𝑘) ∘ 𝐼)) | |
| 30 | 29, 27 | eqeq12d 2747 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝑋 ∘ 𝐼) = 𝑋 ↔ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 31 | 28, 30 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑋 = (𝐺‘𝑘) → (((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)))) |
| 32 | 25, 31 | imbitrrid 246 | . . . . . . . . 9 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 33 | 19, 32 | syl 17 | . . . . . . . 8 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 34 | 33 | impcom 407 | . . . . . . 7 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺‘𝑘)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 35 | 34 | rexlimiva 3125 | . . . . . 6 ⊢ (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 36 | 18, 35 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 37 | 14, 36 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 38 | 13, 37 | jaoi 857 | . . 3 ⊢ ((𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 39 | 1, 38 | sylbi 217 | . 2 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 40 | smndex1mgm.b | . 2 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 41 | 39, 40 | eleq2s 2849 | 1 ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∪ cun 3895 {csn 4571 ∪ ciun 4936 ↦ cmpt 5167 ∘ ccom 5615 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 ..^cfzo 13549 mod cmo 13768 Basecbs 17115 ↾s cress 17136 EndoFMndcefmnd 18771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-tset 17175 df-efmnd 18772 |
| This theorem is referenced by: smndex1mnd 18813 smndex1id 18814 |
| Copyright terms: Public domain | W3C validator |