MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mndlem Structured version   Visualization version   GIF version

Theorem smndex1mndlem 18463
Description: Lemma for smndex1mnd 18464 and smndex1id 18465. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mndlem (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)   𝑋(𝑥)

Proof of Theorem smndex1mndlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elun 4079 . . 3 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
2 elsni 4575 . . . . 5 (𝑋 ∈ {𝐼} → 𝑋 = 𝐼)
3 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
4 smndex1ibas.n . . . . . . . 8 𝑁 ∈ ℕ
5 smndex1ibas.i . . . . . . . 8 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
63, 4, 5smndex1iidm 18455 . . . . . . 7 (𝐼𝐼) = 𝐼
7 coeq2 5756 . . . . . . 7 (𝑋 = 𝐼 → (𝐼𝑋) = (𝐼𝐼))
8 id 22 . . . . . . 7 (𝑋 = 𝐼𝑋 = 𝐼)
96, 7, 83eqtr4a 2805 . . . . . 6 (𝑋 = 𝐼 → (𝐼𝑋) = 𝑋)
10 coeq1 5755 . . . . . . 7 (𝑋 = 𝐼 → (𝑋𝐼) = (𝐼𝐼))
116, 10, 83eqtr4a 2805 . . . . . 6 (𝑋 = 𝐼 → (𝑋𝐼) = 𝑋)
129, 11jca 511 . . . . 5 (𝑋 = 𝐼 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
132, 12syl 17 . . . 4 (𝑋 ∈ {𝐼} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
14 eliun 4925 . . . . 5 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)})
15 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
1615sneqd 4570 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
1716eleq2d 2824 . . . . . . 7 (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺𝑛)} ↔ 𝑋 ∈ {(𝐺𝑘)}))
1817cbvrexvw 3373 . . . . . 6 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)})
19 elsni 4575 . . . . . . . . 9 (𝑋 ∈ {(𝐺𝑘)} → 𝑋 = (𝐺𝑘))
20 smndex1ibas.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
213, 4, 5, 20smndex1igid 18458 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
223, 4, 5smndex1ibas 18454 . . . . . . . . . . . 12 𝐼 ∈ (Base‘𝑀)
233, 4, 5, 20smndex1gid 18457 . . . . . . . . . . . 12 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2422, 23mpan 686 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2521, 24jca 511 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
26 coeq2 5756 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝐼𝑋) = (𝐼 ∘ (𝐺𝑘)))
27 id 22 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → 𝑋 = (𝐺𝑘))
2826, 27eqeq12d 2754 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝐼𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘)))
29 coeq1 5755 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝑋𝐼) = ((𝐺𝑘) ∘ 𝐼))
3029, 27eqeq12d 2754 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝑋𝐼) = 𝑋 ↔ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
3128, 30anbi12d 630 . . . . . . . . . 10 (𝑋 = (𝐺𝑘) → (((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))))
3225, 31syl5ibr 245 . . . . . . . . 9 (𝑋 = (𝐺𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3319, 32syl 17 . . . . . . . 8 (𝑋 ∈ {(𝐺𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3433impcom 407 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺𝑘)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3534rexlimiva 3209 . . . . . 6 (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3618, 35sylbi 216 . . . . 5 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3714, 36sylbi 216 . . . 4 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3813, 37jaoi 853 . . 3 ((𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
391, 38sylbi 216 . 2 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
40 smndex1mgm.b . 2 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
4139, 40eleq2s 2857 1 (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wrex 3064  cun 3881  {csn 4558   ciun 4921  cmpt 5153  ccom 5584  cfv 6418  (class class class)co 7255  0cc0 10802  cn 11903  0cn0 12163  ..^cfzo 13311   mod cmo 13517  Basecbs 16840  s cress 16867  EndoFMndcefmnd 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-efmnd 18423
This theorem is referenced by:  smndex1mnd  18464  smndex1id  18465
  Copyright terms: Public domain W3C validator