![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1mndlem | Structured version Visualization version GIF version |
Description: Lemma for smndex1mnd 18935 and smndex1id 18936. (Contributed by AV, 16-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
smndex1mndlem | ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4162 | . . 3 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
2 | elsni 4647 | . . . . 5 ⊢ (𝑋 ∈ {𝐼} → 𝑋 = 𝐼) | |
3 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
4 | smndex1ibas.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
5 | smndex1ibas.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
6 | 3, 4, 5 | smndex1iidm 18926 | . . . . . . 7 ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
7 | coeq2 5871 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = (𝐼 ∘ 𝐼)) | |
8 | id 22 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → 𝑋 = 𝐼) | |
9 | 6, 7, 8 | 3eqtr4a 2800 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = 𝑋) |
10 | coeq1 5870 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = (𝐼 ∘ 𝐼)) | |
11 | 6, 10, 8 | 3eqtr4a 2800 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = 𝑋) |
12 | 9, 11 | jca 511 | . . . . 5 ⊢ (𝑋 = 𝐼 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝑋 ∈ {𝐼} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
14 | eliun 4999 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)}) | |
15 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | |
16 | 15 | sneqd 4642 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
17 | 16 | eleq2d 2824 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺‘𝑛)} ↔ 𝑋 ∈ {(𝐺‘𝑘)})) |
18 | 17 | cbvrexvw 3235 | . . . . . 6 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)}) |
19 | elsni 4647 | . . . . . . . . 9 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → 𝑋 = (𝐺‘𝑘)) | |
20 | smndex1ibas.g | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
21 | 3, 4, 5, 20 | smndex1igid 18929 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
22 | 3, 4, 5 | smndex1ibas 18925 | . . . . . . . . . . . 12 ⊢ 𝐼 ∈ (Base‘𝑀) |
23 | 3, 4, 5, 20 | smndex1gid 18928 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
24 | 22, 23 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
25 | 21, 24 | jca 511 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
26 | coeq2 5871 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝐼 ∘ 𝑋) = (𝐼 ∘ (𝐺‘𝑘))) | |
27 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → 𝑋 = (𝐺‘𝑘)) | |
28 | 26, 27 | eqeq12d 2750 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝐼 ∘ 𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘))) |
29 | coeq1 5870 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑋 ∘ 𝐼) = ((𝐺‘𝑘) ∘ 𝐼)) | |
30 | 29, 27 | eqeq12d 2750 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝑋 ∘ 𝐼) = 𝑋 ↔ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
31 | 28, 30 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑋 = (𝐺‘𝑘) → (((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)))) |
32 | 25, 31 | imbitrrid 246 | . . . . . . . . 9 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
33 | 19, 32 | syl 17 | . . . . . . . 8 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
34 | 33 | impcom 407 | . . . . . . 7 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺‘𝑘)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
35 | 34 | rexlimiva 3144 | . . . . . 6 ⊢ (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
36 | 18, 35 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
37 | 14, 36 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
38 | 13, 37 | jaoi 857 | . . 3 ⊢ ((𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
39 | 1, 38 | sylbi 217 | . 2 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
40 | smndex1mgm.b | . 2 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
41 | 39, 40 | eleq2s 2856 | 1 ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ∪ cun 3960 {csn 4630 ∪ ciun 4995 ↦ cmpt 5230 ∘ ccom 5692 ‘cfv 6562 (class class class)co 7430 0cc0 11152 ℕcn 12263 ℕ0cn0 12523 ..^cfzo 13690 mod cmo 13905 Basecbs 17244 ↾s cress 17273 EndoFMndcefmnd 18893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-tset 17316 df-efmnd 18894 |
This theorem is referenced by: smndex1mnd 18935 smndex1id 18936 |
Copyright terms: Public domain | W3C validator |