| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1mndlem | Structured version Visualization version GIF version | ||
| Description: Lemma for smndex1mnd 18886 and smndex1id 18887. (Contributed by AV, 16-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1mndlem | ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4128 | . . 3 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
| 2 | elsni 4618 | . . . . 5 ⊢ (𝑋 ∈ {𝐼} → 𝑋 = 𝐼) | |
| 3 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 4 | smndex1ibas.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 5 | smndex1ibas.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 6 | 3, 4, 5 | smndex1iidm 18877 | . . . . . . 7 ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
| 7 | coeq2 5838 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = (𝐼 ∘ 𝐼)) | |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → 𝑋 = 𝐼) | |
| 9 | 6, 7, 8 | 3eqtr4a 2796 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = 𝑋) |
| 10 | coeq1 5837 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = (𝐼 ∘ 𝐼)) | |
| 11 | 6, 10, 8 | 3eqtr4a 2796 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = 𝑋) |
| 12 | 9, 11 | jca 511 | . . . . 5 ⊢ (𝑋 = 𝐼 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝑋 ∈ {𝐼} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 14 | eliun 4971 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)}) | |
| 15 | fveq2 6875 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | |
| 16 | 15 | sneqd 4613 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
| 17 | 16 | eleq2d 2820 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺‘𝑛)} ↔ 𝑋 ∈ {(𝐺‘𝑘)})) |
| 18 | 17 | cbvrexvw 3221 | . . . . . 6 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)}) |
| 19 | elsni 4618 | . . . . . . . . 9 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → 𝑋 = (𝐺‘𝑘)) | |
| 20 | smndex1ibas.g | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 21 | 3, 4, 5, 20 | smndex1igid 18880 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
| 22 | 3, 4, 5 | smndex1ibas 18876 | . . . . . . . . . . . 12 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 23 | 3, 4, 5, 20 | smndex1gid 18879 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 24 | 22, 23 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 25 | 21, 24 | jca 511 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 26 | coeq2 5838 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝐼 ∘ 𝑋) = (𝐼 ∘ (𝐺‘𝑘))) | |
| 27 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → 𝑋 = (𝐺‘𝑘)) | |
| 28 | 26, 27 | eqeq12d 2751 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝐼 ∘ 𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘))) |
| 29 | coeq1 5837 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑋 ∘ 𝐼) = ((𝐺‘𝑘) ∘ 𝐼)) | |
| 30 | 29, 27 | eqeq12d 2751 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝑋 ∘ 𝐼) = 𝑋 ↔ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 31 | 28, 30 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑋 = (𝐺‘𝑘) → (((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)))) |
| 32 | 25, 31 | imbitrrid 246 | . . . . . . . . 9 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 33 | 19, 32 | syl 17 | . . . . . . . 8 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 34 | 33 | impcom 407 | . . . . . . 7 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺‘𝑘)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 35 | 34 | rexlimiva 3133 | . . . . . 6 ⊢ (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 36 | 18, 35 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 37 | 14, 36 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 38 | 13, 37 | jaoi 857 | . . 3 ⊢ ((𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 39 | 1, 38 | sylbi 217 | . 2 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 40 | smndex1mgm.b | . 2 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 41 | 39, 40 | eleq2s 2852 | 1 ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∪ cun 3924 {csn 4601 ∪ ciun 4967 ↦ cmpt 5201 ∘ ccom 5658 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕcn 12238 ℕ0cn0 12499 ..^cfzo 13669 mod cmo 13884 Basecbs 17226 ↾s cress 17249 EndoFMndcefmnd 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-tset 17288 df-efmnd 18845 |
| This theorem is referenced by: smndex1mnd 18886 smndex1id 18887 |
| Copyright terms: Public domain | W3C validator |