MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mndlem Structured version   Visualization version   GIF version

Theorem smndex1mndlem 18843
Description: Lemma for smndex1mnd 18844 and smndex1id 18845. (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mndlem (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)   𝑋(𝑥)

Proof of Theorem smndex1mndlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elun 4119 . . 3 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
2 elsni 4609 . . . . 5 (𝑋 ∈ {𝐼} → 𝑋 = 𝐼)
3 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
4 smndex1ibas.n . . . . . . . 8 𝑁 ∈ ℕ
5 smndex1ibas.i . . . . . . . 8 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
63, 4, 5smndex1iidm 18835 . . . . . . 7 (𝐼𝐼) = 𝐼
7 coeq2 5825 . . . . . . 7 (𝑋 = 𝐼 → (𝐼𝑋) = (𝐼𝐼))
8 id 22 . . . . . . 7 (𝑋 = 𝐼𝑋 = 𝐼)
96, 7, 83eqtr4a 2791 . . . . . 6 (𝑋 = 𝐼 → (𝐼𝑋) = 𝑋)
10 coeq1 5824 . . . . . . 7 (𝑋 = 𝐼 → (𝑋𝐼) = (𝐼𝐼))
116, 10, 83eqtr4a 2791 . . . . . 6 (𝑋 = 𝐼 → (𝑋𝐼) = 𝑋)
129, 11jca 511 . . . . 5 (𝑋 = 𝐼 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
132, 12syl 17 . . . 4 (𝑋 ∈ {𝐼} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
14 eliun 4962 . . . . 5 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)})
15 fveq2 6861 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
1615sneqd 4604 . . . . . . . 8 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
1716eleq2d 2815 . . . . . . 7 (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺𝑛)} ↔ 𝑋 ∈ {(𝐺𝑘)}))
1817cbvrexvw 3217 . . . . . 6 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)})
19 elsni 4609 . . . . . . . . 9 (𝑋 ∈ {(𝐺𝑘)} → 𝑋 = (𝐺𝑘))
20 smndex1ibas.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
213, 4, 5, 20smndex1igid 18838 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
223, 4, 5smndex1ibas 18834 . . . . . . . . . . . 12 𝐼 ∈ (Base‘𝑀)
233, 4, 5, 20smndex1gid 18837 . . . . . . . . . . . 12 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2422, 23mpan 690 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
2521, 24jca 511 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
26 coeq2 5825 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝐼𝑋) = (𝐼 ∘ (𝐺𝑘)))
27 id 22 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → 𝑋 = (𝐺𝑘))
2826, 27eqeq12d 2746 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝐼𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘)))
29 coeq1 5824 . . . . . . . . . . . 12 (𝑋 = (𝐺𝑘) → (𝑋𝐼) = ((𝐺𝑘) ∘ 𝐼))
3029, 27eqeq12d 2746 . . . . . . . . . . 11 (𝑋 = (𝐺𝑘) → ((𝑋𝐼) = 𝑋 ↔ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘)))
3128, 30anbi12d 632 . . . . . . . . . 10 (𝑋 = (𝐺𝑘) → (((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘) ∧ ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))))
3225, 31imbitrrid 246 . . . . . . . . 9 (𝑋 = (𝐺𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3319, 32syl 17 . . . . . . . 8 (𝑋 ∈ {(𝐺𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋)))
3433impcom 407 . . . . . . 7 ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺𝑘)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3534rexlimiva 3127 . . . . . 6 (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑘)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3618, 35sylbi 217 . . . . 5 (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3714, 36sylbi 217 . . . 4 (𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
3813, 37jaoi 857 . . 3 ((𝑋 ∈ {𝐼} ∨ 𝑋 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
391, 38sylbi 217 . 2 (𝑋 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
40 smndex1mgm.b . 2 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
4139, 40eleq2s 2847 1 (𝑋𝐵 → ((𝐼𝑋) = 𝑋 ∧ (𝑋𝐼) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054  cun 3915  {csn 4592   ciun 4958  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  0cc0 11075  cn 12193  0cn0 12449  ..^cfzo 13622   mod cmo 13838  Basecbs 17186  s cress 17207  EndoFMndcefmnd 18802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-tset 17246  df-efmnd 18803
This theorem is referenced by:  smndex1mnd  18844  smndex1id  18845
  Copyright terms: Public domain W3C validator