| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1mndlem | Structured version Visualization version GIF version | ||
| Description: Lemma for smndex1mnd 18813 and smndex1id 18814. (Contributed by AV, 16-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1mndlem | ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4112 | . . 3 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
| 2 | elsni 4602 | . . . . 5 ⊢ (𝑋 ∈ {𝐼} → 𝑋 = 𝐼) | |
| 3 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 4 | smndex1ibas.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 5 | smndex1ibas.i | . . . . . . . 8 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 6 | 3, 4, 5 | smndex1iidm 18804 | . . . . . . 7 ⊢ (𝐼 ∘ 𝐼) = 𝐼 |
| 7 | coeq2 5812 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = (𝐼 ∘ 𝐼)) | |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → 𝑋 = 𝐼) | |
| 9 | 6, 7, 8 | 3eqtr4a 2790 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝐼 ∘ 𝑋) = 𝑋) |
| 10 | coeq1 5811 | . . . . . . 7 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = (𝐼 ∘ 𝐼)) | |
| 11 | 6, 10, 8 | 3eqtr4a 2790 | . . . . . 6 ⊢ (𝑋 = 𝐼 → (𝑋 ∘ 𝐼) = 𝑋) |
| 12 | 9, 11 | jca 511 | . . . . 5 ⊢ (𝑋 = 𝐼 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝑋 ∈ {𝐼} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 14 | eliun 4955 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)}) | |
| 15 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | |
| 16 | 15 | sneqd 4597 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
| 17 | 16 | eleq2d 2814 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑋 ∈ {(𝐺‘𝑛)} ↔ 𝑋 ∈ {(𝐺‘𝑘)})) |
| 18 | 17 | cbvrexvw 3214 | . . . . . 6 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)}) |
| 19 | elsni 4602 | . . . . . . . . 9 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → 𝑋 = (𝐺‘𝑘)) | |
| 20 | smndex1ibas.g | . . . . . . . . . . . 12 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 21 | 3, 4, 5, 20 | smndex1igid 18807 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
| 22 | 3, 4, 5 | smndex1ibas 18803 | . . . . . . . . . . . 12 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 23 | 3, 4, 5, 20 | smndex1gid 18806 | . . . . . . . . . . . 12 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 24 | 22, 23 | mpan 690 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
| 25 | 21, 24 | jca 511 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 26 | coeq2 5812 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝐼 ∘ 𝑋) = (𝐼 ∘ (𝐺‘𝑘))) | |
| 27 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → 𝑋 = (𝐺‘𝑘)) | |
| 28 | 26, 27 | eqeq12d 2745 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝐼 ∘ 𝑋) = 𝑋 ↔ (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘))) |
| 29 | coeq1 5811 | . . . . . . . . . . . 12 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑋 ∘ 𝐼) = ((𝐺‘𝑘) ∘ 𝐼)) | |
| 30 | 29, 27 | eqeq12d 2745 | . . . . . . . . . . 11 ⊢ (𝑋 = (𝐺‘𝑘) → ((𝑋 ∘ 𝐼) = 𝑋 ↔ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘))) |
| 31 | 28, 30 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑋 = (𝐺‘𝑘) → (((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋) ↔ ((𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘) ∧ ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)))) |
| 32 | 25, 31 | imbitrrid 246 | . . . . . . . . 9 ⊢ (𝑋 = (𝐺‘𝑘) → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 33 | 19, 32 | syl 17 | . . . . . . . 8 ⊢ (𝑋 ∈ {(𝐺‘𝑘)} → (𝑘 ∈ (0..^𝑁) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋))) |
| 34 | 33 | impcom 407 | . . . . . . 7 ⊢ ((𝑘 ∈ (0..^𝑁) ∧ 𝑋 ∈ {(𝐺‘𝑘)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 35 | 34 | rexlimiva 3126 | . . . . . 6 ⊢ (∃𝑘 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑘)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 36 | 18, 35 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ (0..^𝑁)𝑋 ∈ {(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 37 | 14, 36 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 38 | 13, 37 | jaoi 857 | . . 3 ⊢ ((𝑋 ∈ {𝐼} ∨ 𝑋 ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 39 | 1, 38 | sylbi 217 | . 2 ⊢ (𝑋 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| 40 | smndex1mgm.b | . 2 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 41 | 39, 40 | eleq2s 2846 | 1 ⊢ (𝑋 ∈ 𝐵 → ((𝐼 ∘ 𝑋) = 𝑋 ∧ (𝑋 ∘ 𝐼) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3909 {csn 4585 ∪ ciun 4951 ↦ cmpt 5183 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 ..^cfzo 13591 mod cmo 13807 Basecbs 17155 ↾s cress 17176 EndoFMndcefmnd 18771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-tset 17215 df-efmnd 18772 |
| This theorem is referenced by: smndex1mnd 18813 smndex1id 18814 |
| Copyright terms: Public domain | W3C validator |