MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnl Structured version   Visualization version   GIF version

Theorem relexpsucnnl 14786
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucnnl ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucnnl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7314 . . . . . 6 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
21oveq2d 7323 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(1 + 1)))
3 oveq2 7315 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
43coeq2d 5784 . . . . 5 (𝑛 = 1 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟1)))
52, 4eqeq12d 2752 . . . 4 (𝑛 = 1 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1))))
65imbi2d 341 . . 3 (𝑛 = 1 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))))
7 oveq1 7314 . . . . . 6 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
87oveq2d 7323 . . . . 5 (𝑛 = 𝑚 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑚 + 1)))
9 oveq2 7315 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
109coeq2d 5784 . . . . 5 (𝑛 = 𝑚 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑚)))
118, 10eqeq12d 2752 . . . 4 (𝑛 = 𝑚 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))))
1211imbi2d 341 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))))
13 oveq1 7314 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 + 1) = ((𝑚 + 1) + 1))
1413oveq2d 7323 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟((𝑚 + 1) + 1)))
15 oveq2 7315 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1615coeq2d 5784 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
1714, 16eqeq12d 2752 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
1817imbi2d 341 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
19 oveq1 7314 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
2019oveq2d 7323 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑁 + 1)))
21 oveq2 7315 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2221coeq2d 5784 . . . . 5 (𝑛 = 𝑁 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑁)))
2320, 22eqeq12d 2752 . . . 4 (𝑛 = 𝑁 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
2423imbi2d 341 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))))
25 relexp1g 14782 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625coeq1d 5783 . . . 4 (𝑅𝑉 → ((𝑅𝑟1) ∘ 𝑅) = (𝑅𝑅))
27 1nn 12030 . . . . 5 1 ∈ ℕ
28 relexpsucnnr 14781 . . . . 5 ((𝑅𝑉 ∧ 1 ∈ ℕ) → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
2927, 28mpan2 689 . . . 4 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
3025coeq2d 5784 . . . 4 (𝑅𝑉 → (𝑅 ∘ (𝑅𝑟1)) = (𝑅𝑅))
3126, 29, 303eqtr4d 2786 . . 3 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))
32 coeq1 5779 . . . . . . . . 9 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅))
33 coass 6183 . . . . . . . . 9 ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅))
3432, 33eqtrdi 2792 . . . . . . . 8 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
3534adantl 483 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
36 simpl 484 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉𝑚 ∈ ℕ))
37 peano2nn 12031 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
3837anim2i 618 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ))
39 relexpsucnnr 14781 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
4036, 38, 393syl 18 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
41 relexpsucnnr 14781 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4241adantr 482 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4342coeq2d 5784 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅 ∘ (𝑅𝑟(𝑚 + 1))) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
4435, 40, 433eqtr4d 2786 . . . . . 6 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
4544ex 414 . . . . 5 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
4645expcom 415 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
4746a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
486, 12, 18, 24, 31, 47nnind 12037 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
4948impcom 409 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  ccom 5604  (class class class)co 7307  1c1 10918   + caddc 10920  cn 12019  𝑟crelexp 14775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-seq 13768  df-relexp 14776
This theorem is referenced by:  relexpsucl  14787  relexpcnv  14791  relexpaddnn  14807  trclfvcom  41369  trclimalb2  41372
  Copyright terms: Public domain W3C validator