MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnl Structured version   Visualization version   GIF version

Theorem relexpsucnnl 14944
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucnnl ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucnnl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . . . 6 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
21oveq2d 7371 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(1 + 1)))
3 oveq2 7363 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
43coeq2d 5808 . . . . 5 (𝑛 = 1 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟1)))
52, 4eqeq12d 2749 . . . 4 (𝑛 = 1 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1))))
65imbi2d 340 . . 3 (𝑛 = 1 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))))
7 oveq1 7362 . . . . . 6 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
87oveq2d 7371 . . . . 5 (𝑛 = 𝑚 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑚 + 1)))
9 oveq2 7363 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
109coeq2d 5808 . . . . 5 (𝑛 = 𝑚 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑚)))
118, 10eqeq12d 2749 . . . 4 (𝑛 = 𝑚 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))))
1211imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))))
13 oveq1 7362 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 + 1) = ((𝑚 + 1) + 1))
1413oveq2d 7371 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟((𝑚 + 1) + 1)))
15 oveq2 7363 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1615coeq2d 5808 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
1714, 16eqeq12d 2749 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
1817imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
19 oveq1 7362 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
2019oveq2d 7371 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑁 + 1)))
21 oveq2 7363 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2221coeq2d 5808 . . . . 5 (𝑛 = 𝑁 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑁)))
2320, 22eqeq12d 2749 . . . 4 (𝑛 = 𝑁 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
2423imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))))
25 relexp1g 14940 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625coeq1d 5807 . . . 4 (𝑅𝑉 → ((𝑅𝑟1) ∘ 𝑅) = (𝑅𝑅))
27 1nn 12147 . . . . 5 1 ∈ ℕ
28 relexpsucnnr 14939 . . . . 5 ((𝑅𝑉 ∧ 1 ∈ ℕ) → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
2927, 28mpan2 691 . . . 4 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
3025coeq2d 5808 . . . 4 (𝑅𝑉 → (𝑅 ∘ (𝑅𝑟1)) = (𝑅𝑅))
3126, 29, 303eqtr4d 2778 . . 3 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))
32 coeq1 5803 . . . . . . . . 9 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅))
33 coass 6221 . . . . . . . . 9 ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅))
3432, 33eqtrdi 2784 . . . . . . . 8 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
3534adantl 481 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
36 simpl 482 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉𝑚 ∈ ℕ))
37 peano2nn 12148 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
3837anim2i 617 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ))
39 relexpsucnnr 14939 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
4036, 38, 393syl 18 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
41 relexpsucnnr 14939 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4241adantr 480 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4342coeq2d 5808 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅 ∘ (𝑅𝑟(𝑚 + 1))) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
4435, 40, 433eqtr4d 2778 . . . . . 6 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
4544ex 412 . . . . 5 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
4645expcom 413 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
4746a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
486, 12, 18, 24, 31, 47nnind 12154 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
4948impcom 407 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ccom 5625  (class class class)co 7355  1c1 11018   + caddc 11020  cn 12136  𝑟crelexp 14933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-seq 13916  df-relexp 14934
This theorem is referenced by:  relexpsucl  14945  relexpcnv  14949  relexpaddnn  14965  trclfvcom  43880  trclimalb2  43883
  Copyright terms: Public domain W3C validator