MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnl Structured version   Visualization version   GIF version

Theorem relexpsucnnl 14996
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucnnl ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucnnl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . . . . 6 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
21oveq2d 7403 . . . . 5 (𝑛 = 1 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(1 + 1)))
3 oveq2 7395 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
43coeq2d 5826 . . . . 5 (𝑛 = 1 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟1)))
52, 4eqeq12d 2745 . . . 4 (𝑛 = 1 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1))))
65imbi2d 340 . . 3 (𝑛 = 1 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))))
7 oveq1 7394 . . . . . 6 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
87oveq2d 7403 . . . . 5 (𝑛 = 𝑚 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑚 + 1)))
9 oveq2 7395 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
109coeq2d 5826 . . . . 5 (𝑛 = 𝑚 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑚)))
118, 10eqeq12d 2745 . . . 4 (𝑛 = 𝑚 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))))
1211imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))))
13 oveq1 7394 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 + 1) = ((𝑚 + 1) + 1))
1413oveq2d 7403 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟((𝑚 + 1) + 1)))
15 oveq2 7395 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1615coeq2d 5826 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
1714, 16eqeq12d 2745 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
1817imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
19 oveq1 7394 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
2019oveq2d 7403 . . . . 5 (𝑛 = 𝑁 → (𝑅𝑟(𝑛 + 1)) = (𝑅𝑟(𝑁 + 1)))
21 oveq2 7395 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2221coeq2d 5826 . . . . 5 (𝑛 = 𝑁 → (𝑅 ∘ (𝑅𝑟𝑛)) = (𝑅 ∘ (𝑅𝑟𝑁)))
2320, 22eqeq12d 2745 . . . 4 (𝑛 = 𝑁 → ((𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)) ↔ (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
2423imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛))) ↔ (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))))
25 relexp1g 14992 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2625coeq1d 5825 . . . 4 (𝑅𝑉 → ((𝑅𝑟1) ∘ 𝑅) = (𝑅𝑅))
27 1nn 12197 . . . . 5 1 ∈ ℕ
28 relexpsucnnr 14991 . . . . 5 ((𝑅𝑉 ∧ 1 ∈ ℕ) → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
2927, 28mpan2 691 . . . 4 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = ((𝑅𝑟1) ∘ 𝑅))
3025coeq2d 5826 . . . 4 (𝑅𝑉 → (𝑅 ∘ (𝑅𝑟1)) = (𝑅𝑅))
3126, 29, 303eqtr4d 2774 . . 3 (𝑅𝑉 → (𝑅𝑟(1 + 1)) = (𝑅 ∘ (𝑅𝑟1)))
32 coeq1 5821 . . . . . . . . 9 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅))
33 coass 6238 . . . . . . . . 9 ((𝑅 ∘ (𝑅𝑟𝑚)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅))
3432, 33eqtrdi 2780 . . . . . . . 8 ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
3534adantl 481 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
36 simpl 482 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉𝑚 ∈ ℕ))
37 peano2nn 12198 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
3837anim2i 617 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ))
39 relexpsucnnr 14991 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑚 + 1) ∈ ℕ) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
4036, 38, 393syl 18 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = ((𝑅𝑟(𝑚 + 1)) ∘ 𝑅))
41 relexpsucnnr 14991 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4241adantr 480 . . . . . . . 8 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
4342coeq2d 5826 . . . . . . 7 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅 ∘ (𝑅𝑟(𝑚 + 1))) = (𝑅 ∘ ((𝑅𝑟𝑚) ∘ 𝑅)))
4435, 40, 433eqtr4d 2774 . . . . . 6 (((𝑅𝑉𝑚 ∈ ℕ) ∧ (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))
4544ex 412 . . . . 5 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1)))))
4645expcom 413 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)) → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
4746a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚))) → (𝑅𝑉 → (𝑅𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅𝑟(𝑚 + 1))))))
486, 12, 18, 24, 31, 47nnind 12204 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
4948impcom 407 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ccom 5642  (class class class)co 7387  1c1 11069   + caddc 11071  cn 12186  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpsucl  14997  relexpcnv  15001  relexpaddnn  15017  trclfvcom  43712  trclimalb2  43715
  Copyright terms: Public domain W3C validator