Step | Hyp | Ref
| Expression |
1 | | oveq1 7275 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) |
2 | 1 | oveq2d 7284 |
. . . . 5
⊢ (𝑛 = 1 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅↑𝑟(1 +
1))) |
3 | | oveq2 7276 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) |
4 | 3 | coeq2d 5768 |
. . . . 5
⊢ (𝑛 = 1 → (𝑅 ∘ (𝑅↑𝑟𝑛)) = (𝑅 ∘ (𝑅↑𝑟1))) |
5 | 2, 4 | eqeq12d 2755 |
. . . 4
⊢ (𝑛 = 1 → ((𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛)) ↔ (𝑅↑𝑟(1 + 1)) = (𝑅 ∘ (𝑅↑𝑟1)))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) ↔ (𝑅 ∈ 𝑉 → (𝑅↑𝑟(1 + 1)) = (𝑅 ∘ (𝑅↑𝑟1))))) |
7 | | oveq1 7275 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1)) |
8 | 7 | oveq2d 7284 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅↑𝑟(𝑚 + 1))) |
9 | | oveq2 7276 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) |
10 | 9 | coeq2d 5768 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑅 ∘ (𝑅↑𝑟𝑛)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) |
11 | 8, 10 | eqeq12d 2755 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛)) ↔ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) ↔ (𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))))) |
13 | | oveq1 7275 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝑛 + 1) = ((𝑚 + 1) + 1)) |
14 | 13 | oveq2d 7284 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟(𝑛 + 1)) = (𝑅↑𝑟((𝑚 + 1) + 1))) |
15 | | oveq2 7276 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) |
16 | 15 | coeq2d 5768 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑅 ∘ (𝑅↑𝑟𝑛)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1)))) |
17 | 14, 16 | eqeq12d 2755 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛)) ↔ (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1))))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) ↔ (𝑅 ∈ 𝑉 → (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1)))))) |
19 | | oveq1 7275 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) |
20 | 19 | oveq2d 7284 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅↑𝑟(𝑁 + 1))) |
21 | | oveq2 7276 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) |
22 | 21 | coeq2d 5768 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑅 ∘ (𝑅↑𝑟𝑛)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
23 | 20, 22 | eqeq12d 2755 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛)) ↔ (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) ↔ (𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))))) |
25 | | relexp1g 14718 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
26 | 25 | coeq1d 5767 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) ∘ 𝑅) = (𝑅 ∘ 𝑅)) |
27 | | 1nn 11967 |
. . . . 5
⊢ 1 ∈
ℕ |
28 | | relexpsucnnr 14717 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 1 ∈ ℕ) → (𝑅↑𝑟(1 +
1)) = ((𝑅↑𝑟1) ∘ 𝑅)) |
29 | 27, 28 | mpan2 687 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟(1 + 1)) = ((𝑅↑𝑟1)
∘ 𝑅)) |
30 | 25 | coeq2d 5768 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∘ (𝑅↑𝑟1)) = (𝑅 ∘ 𝑅)) |
31 | 26, 29, 30 | 3eqtr4d 2789 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟(1 + 1)) = (𝑅 ∘ (𝑅↑𝑟1))) |
32 | | coeq1 5763 |
. . . . . . . . 9
⊢ ((𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚)) → ((𝑅↑𝑟(𝑚 + 1)) ∘ 𝑅) = ((𝑅 ∘ (𝑅↑𝑟𝑚)) ∘ 𝑅)) |
33 | | coass 6166 |
. . . . . . . . 9
⊢ ((𝑅 ∘ (𝑅↑𝑟𝑚)) ∘ 𝑅) = (𝑅 ∘ ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
34 | 32, 33 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚)) → ((𝑅↑𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅↑𝑟𝑚) ∘ 𝑅))) |
35 | 34 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → ((𝑅↑𝑟(𝑚 + 1)) ∘ 𝑅) = (𝑅 ∘ ((𝑅↑𝑟𝑚) ∘ 𝑅))) |
36 | | simpl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ)) |
37 | | peano2nn 11968 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
38 | 37 | anim2i 616 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅 ∈ 𝑉 ∧ (𝑚 + 1) ∈ ℕ)) |
39 | | relexpsucnnr 14717 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑚 + 1) ∈ ℕ) → (𝑅↑𝑟((𝑚 + 1) + 1)) = ((𝑅↑𝑟(𝑚 + 1)) ∘ 𝑅)) |
40 | 36, 38, 39 | 3syl 18 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅↑𝑟((𝑚 + 1) + 1)) = ((𝑅↑𝑟(𝑚 + 1)) ∘ 𝑅)) |
41 | | relexpsucnnr 14717 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
43 | 42 | coeq2d 5768 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1))) = (𝑅 ∘ ((𝑅↑𝑟𝑚) ∘ 𝑅))) |
44 | 35, 40, 43 | 3eqtr4d 2789 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) ∧ (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1)))) |
45 | 44 | ex 412 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → ((𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚)) → (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1))))) |
46 | 45 | expcom 413 |
. . . 4
⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → ((𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚)) → (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1)))))) |
47 | 46 | a2d 29 |
. . 3
⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑚))) → (𝑅 ∈ 𝑉 → (𝑅↑𝑟((𝑚 + 1) + 1)) = (𝑅 ∘ (𝑅↑𝑟(𝑚 + 1)))))) |
48 | 6, 12, 18, 24, 31, 47 | nnind 11974 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
49 | 48 | impcom 407 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |