![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cznrnglem | Structured version Visualization version GIF version |
Description: Lemma for cznrng 46941: The base set of the ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the ℤ/nℤ structure. (Contributed by AV, 16-Feb-2020.) |
Ref | Expression |
---|---|
cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
cznrng.x | ⊢ 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)⟩) |
Ref | Expression |
---|---|
cznrnglem | ⊢ 𝐵 = (Base‘𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cznrng.b | . 2 ⊢ 𝐵 = (Base‘𝑌) | |
2 | baseid 17151 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
3 | basendxnmulrndx 17244 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
4 | 2, 3 | setsnid 17146 | . 2 ⊢ (Base‘𝑌) = (Base‘(𝑌 sSet ⟨(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)⟩)) |
5 | cznrng.x | . . . 4 ⊢ 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)⟩) | |
6 | 5 | eqcomi 2739 | . . 3 ⊢ (𝑌 sSet ⟨(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)⟩) = 𝑋 |
7 | 6 | fveq2i 6893 | . 2 ⊢ (Base‘(𝑌 sSet ⟨(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)⟩)) = (Base‘𝑋) |
8 | 1, 4, 7 | 3eqtri 2762 | 1 ⊢ 𝐵 = (Base‘𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⟨cop 4633 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 sSet csts 17100 ndxcnx 17130 Basecbs 17148 .rcmulr 17202 ℤ/nℤczn 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-mulr 17215 |
This theorem is referenced by: cznrng 46941 cznnring 46942 |
Copyright terms: Public domain | W3C validator |