|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lssacsex | Structured version Visualization version GIF version | ||
| Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20966 by lspsolv 21146. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| lssacsex.1 | ⊢ 𝐴 = (LSubSp‘𝑊) | 
| lssacsex.2 | ⊢ 𝑁 = (mrCls‘𝐴) | 
| lssacsex.3 | ⊢ 𝑋 = (Base‘𝑊) | 
| Ref | Expression | 
|---|---|
| lssacsex | ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lveclmod 21106 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lssacsex.3 | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | lssacsex.1 | . . . 4 ⊢ 𝐴 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssacs 20966 | . . 3 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (ACS‘𝑋)) | 
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ LVec → 𝐴 ∈ (ACS‘𝑋)) | 
| 6 | simplll 774 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑊 ∈ LVec) | |
| 7 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ∈ 𝒫 𝑋) | |
| 8 | 7 | elpwid 4608 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ⊆ 𝑋) | 
| 9 | simplr 768 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ 𝑋) | |
| 10 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | |
| 11 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 12 | lssacsex.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 13 | 3, 11, 12 | mrclsp 20988 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) | 
| 14 | 6, 1, 13 | 3syl 18 | . . . . . . . . . 10 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (LSpan‘𝑊) = 𝑁) | 
| 15 | 14 | fveq1d 6907 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑠 ∪ {𝑦}))) | 
| 16 | 14 | fveq1d 6907 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘𝑠) = (𝑁‘𝑠)) | 
| 17 | 15, 16 | difeq12d 4126 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)) = ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | 
| 18 | 10, 17 | eleqtrrd 2843 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠))) | 
| 19 | 2, 3, 11 | lspsolv 21146 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) | 
| 20 | 6, 8, 9, 18, 19 | syl13anc 1373 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) | 
| 21 | 14 | fveq1d 6907 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 22 | 20, 21 | eleqtrd 2842 | . . . . 5 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 23 | 22 | ralrimiva 3145 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 24 | 23 | ralrimiva 3145 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 25 | 24 | ralrimiva 3145 | . 2 ⊢ (𝑊 ∈ LVec → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 26 | 5, 25 | jca 511 | 1 ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∖ cdif 3947 ∪ cun 3948 ⊆ wss 3950 𝒫 cpw 4599 {csn 4625 ‘cfv 6560 Basecbs 17248 mrClscmrc 17627 ACScacs 17629 LModclmod 20859 LSubSpclss 20930 LSpanclspn 20970 LVecclvec 21102 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 | 
| This theorem is referenced by: lvecdim 21160 lvecdimfi 33647 lindsdom 37622 aacllem 49375 | 
| Copyright terms: Public domain | W3C validator |