| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssacsex | Structured version Visualization version GIF version | ||
| Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20906 by lspsolv 21086. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| lssacsex.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
| lssacsex.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| lssacsex.3 | ⊢ 𝑋 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| lssacsex | ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21046 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lssacsex.3 | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | lssacsex.1 | . . . 4 ⊢ 𝐴 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssacs 20906 | . . 3 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (ACS‘𝑋)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ LVec → 𝐴 ∈ (ACS‘𝑋)) |
| 6 | simplll 774 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑊 ∈ LVec) | |
| 7 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ∈ 𝒫 𝑋) | |
| 8 | 7 | elpwid 4568 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ⊆ 𝑋) |
| 9 | simplr 768 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ 𝑋) | |
| 10 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | |
| 11 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 12 | lssacsex.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 13 | 3, 11, 12 | mrclsp 20928 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
| 14 | 6, 1, 13 | 3syl 18 | . . . . . . . . . 10 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (LSpan‘𝑊) = 𝑁) |
| 15 | 14 | fveq1d 6842 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑠 ∪ {𝑦}))) |
| 16 | 14 | fveq1d 6842 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘𝑠) = (𝑁‘𝑠)) |
| 17 | 15, 16 | difeq12d 4086 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)) = ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) |
| 18 | 10, 17 | eleqtrrd 2831 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠))) |
| 19 | 2, 3, 11 | lspsolv 21086 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
| 20 | 6, 8, 9, 18, 19 | syl13anc 1374 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
| 21 | 14 | fveq1d 6842 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑠 ∪ {𝑧}))) |
| 22 | 20, 21 | eleqtrd 2830 | . . . . 5 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 23 | 22 | ralrimiva 3125 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 24 | 23 | ralrimiva 3125 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 25 | 24 | ralrimiva 3125 | . 2 ⊢ (𝑊 ∈ LVec → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 26 | 5, 25 | jca 511 | 1 ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 𝒫 cpw 4559 {csn 4585 ‘cfv 6499 Basecbs 17156 mrClscmrc 17521 ACScacs 17523 LModclmod 20799 LSubSpclss 20870 LSpanclspn 20910 LVecclvec 21042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-0g 17381 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 |
| This theorem is referenced by: lvecdim 21100 lvecdimfi 33585 lindsdom 37602 aacllem 49784 |
| Copyright terms: Public domain | W3C validator |