MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssacsex Structured version   Visualization version   GIF version

Theorem lssacsex 21087
Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20906 by lspsolv 21086. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
lssacsex.1 𝐴 = (LSubSp‘𝑊)
lssacsex.2 𝑁 = (mrCls‘𝐴)
lssacsex.3 𝑋 = (Base‘𝑊)
Assertion
Ref Expression
lssacsex (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))))
Distinct variable groups:   𝑊,𝑠,𝑦,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑁(𝑦,𝑧,𝑠)   𝑋(𝑠)

Proof of Theorem lssacsex
StepHypRef Expression
1 lveclmod 21046 . . 3 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2 lssacsex.3 . . . 4 𝑋 = (Base‘𝑊)
3 lssacsex.1 . . . 4 𝐴 = (LSubSp‘𝑊)
42, 3lssacs 20906 . . 3 (𝑊 ∈ LMod → 𝐴 ∈ (ACS‘𝑋))
51, 4syl 17 . 2 (𝑊 ∈ LVec → 𝐴 ∈ (ACS‘𝑋))
6 simplll 774 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑊 ∈ LVec)
7 simpllr 775 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑠 ∈ 𝒫 𝑋)
87elpwid 4568 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑠𝑋)
9 simplr 768 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑦𝑋)
10 simpr 484 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠)))
11 eqid 2729 . . . . . . . . . . . 12 (LSpan‘𝑊) = (LSpan‘𝑊)
12 lssacsex.2 . . . . . . . . . . . 12 𝑁 = (mrCls‘𝐴)
133, 11, 12mrclsp 20928 . . . . . . . . . . 11 (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁)
146, 1, 133syl 18 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → (LSpan‘𝑊) = 𝑁)
1514fveq1d 6842 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑠 ∪ {𝑦})))
1614fveq1d 6842 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → ((LSpan‘𝑊)‘𝑠) = (𝑁𝑠))
1715, 16difeq12d 4086 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)) = ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠)))
1810, 17eleqtrrd 2831 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))
192, 3, 11lspsolv 21086 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑠𝑋𝑦𝑋𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})))
206, 8, 9, 18, 19syl13anc 1374 . . . . . 6 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})))
2114fveq1d 6842 . . . . . 6 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑠 ∪ {𝑧})))
2220, 21eleqtrd 2830 . . . . 5 ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))) → 𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
2322ralrimiva 3125 . . . 4 (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦𝑋) → ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
2423ralrimiva 3125 . . 3 ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
2524ralrimiva 3125 . 2 (𝑊 ∈ LVec → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
265, 25jca 511 1 (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  wss 3911  𝒫 cpw 4559  {csn 4585  cfv 6499  Basecbs 17156  mrClscmrc 17521  ACScacs 17523  LModclmod 20799  LSubSpclss 20870  LSpanclspn 20910  LVecclvec 21042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-0g 17381  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-oppr 20258  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043
This theorem is referenced by:  lvecdim  21100  lvecdimfi  33585  lindsdom  37602  aacllem  49784
  Copyright terms: Public domain W3C validator