| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssacsex | Structured version Visualization version GIF version | ||
| Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20854 by lspsolv 21034. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| lssacsex.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
| lssacsex.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| lssacsex.3 | ⊢ 𝑋 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| lssacsex | ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 20994 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lssacsex.3 | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | lssacsex.1 | . . . 4 ⊢ 𝐴 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssacs 20854 | . . 3 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (ACS‘𝑋)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ LVec → 𝐴 ∈ (ACS‘𝑋)) |
| 6 | simplll 774 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑊 ∈ LVec) | |
| 7 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ∈ 𝒫 𝑋) | |
| 8 | 7 | elpwid 4556 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ⊆ 𝑋) |
| 9 | simplr 768 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ 𝑋) | |
| 10 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | |
| 11 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 12 | lssacsex.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 13 | 3, 11, 12 | mrclsp 20876 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
| 14 | 6, 1, 13 | 3syl 18 | . . . . . . . . . 10 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (LSpan‘𝑊) = 𝑁) |
| 15 | 14 | fveq1d 6818 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑠 ∪ {𝑦}))) |
| 16 | 14 | fveq1d 6818 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘𝑠) = (𝑁‘𝑠)) |
| 17 | 15, 16 | difeq12d 4074 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)) = ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) |
| 18 | 10, 17 | eleqtrrd 2831 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠))) |
| 19 | 2, 3, 11 | lspsolv 21034 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
| 20 | 6, 8, 9, 18, 19 | syl13anc 1374 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
| 21 | 14 | fveq1d 6818 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑠 ∪ {𝑧}))) |
| 22 | 20, 21 | eleqtrd 2830 | . . . . 5 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 23 | 22 | ralrimiva 3121 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 24 | 23 | ralrimiva 3121 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 25 | 24 | ralrimiva 3121 | . 2 ⊢ (𝑊 ∈ LVec → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 26 | 5, 25 | jca 511 | 1 ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3896 ∪ cun 3897 ⊆ wss 3899 𝒫 cpw 4547 {csn 4573 ‘cfv 6476 Basecbs 17107 mrClscmrc 17472 ACScacs 17474 LModclmod 20747 LSubSpclss 20818 LSpanclspn 20858 LVecclvec 20990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-3 12180 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-0g 17332 df-mre 17475 df-mrc 17476 df-acs 17478 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-submnd 18645 df-grp 18802 df-minusg 18803 df-sbg 18804 df-subg 18989 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-ring 20107 df-oppr 20209 df-dvdsr 20229 df-unit 20230 df-invr 20260 df-drng 20600 df-lmod 20749 df-lss 20819 df-lsp 20859 df-lvec 20991 |
| This theorem is referenced by: lvecdim 21048 lvecdimfi 33576 lindsdom 37611 aacllem 49800 |
| Copyright terms: Public domain | W3C validator |