![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssacsex | Structured version Visualization version GIF version |
Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20726 by lspsolv 20905. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lssacsex.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
lssacsex.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
lssacsex.3 | ⊢ 𝑋 = (Base‘𝑊) |
Ref | Expression |
---|---|
lssacsex | ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 20865 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
2 | lssacsex.3 | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
3 | lssacsex.1 | . . . 4 ⊢ 𝐴 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssacs 20726 | . . 3 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (ACS‘𝑋)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ LVec → 𝐴 ∈ (ACS‘𝑋)) |
6 | simplll 772 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑊 ∈ LVec) | |
7 | simpllr 773 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ∈ 𝒫 𝑋) | |
8 | 7 | elpwid 4611 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑠 ⊆ 𝑋) |
9 | simplr 766 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ 𝑋) | |
10 | simpr 484 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | |
11 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
12 | lssacsex.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (mrCls‘𝐴) | |
13 | 3, 11, 12 | mrclsp 20748 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
14 | 6, 1, 13 | 3syl 18 | . . . . . . . . . 10 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (LSpan‘𝑊) = 𝑁) |
15 | 14 | fveq1d 6893 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑠 ∪ {𝑦}))) |
16 | 14 | fveq1d 6893 | . . . . . . . . 9 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘𝑠) = (𝑁‘𝑠)) |
17 | 15, 16 | difeq12d 4123 | . . . . . . . 8 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)) = ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) |
18 | 10, 17 | eleqtrrd 2835 | . . . . . . 7 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠))) |
19 | 2, 3, 11 | lspsolv 20905 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑠 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ (((LSpan‘𝑊)‘(𝑠 ∪ {𝑦})) ∖ ((LSpan‘𝑊)‘𝑠)))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
20 | 6, 8, 9, 18, 19 | syl13anc 1371 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧}))) |
21 | 14 | fveq1d 6893 | . . . . . 6 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑠 ∪ {𝑧}))) |
22 | 20, 21 | eleqtrd 2834 | . . . . 5 ⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) → 𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
23 | 22 | ralrimiva 3145 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
24 | 23 | ralrimiva 3145 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
25 | 24 | ralrimiva 3145 | . 2 ⊢ (𝑊 ∈ LVec → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
26 | 5, 25 | jca 511 | 1 ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ∪ cun 3946 ⊆ wss 3948 𝒫 cpw 4602 {csn 4628 ‘cfv 6543 Basecbs 17151 mrClscmrc 17534 ACScacs 17536 LModclmod 20618 LSubSpclss 20690 LSpanclspn 20730 LVecclvec 20861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-drng 20506 df-lmod 20620 df-lss 20691 df-lsp 20731 df-lvec 20862 |
This theorem is referenced by: lvecdim 20919 lvecdimfi 32985 lindsdom 36798 aacllem 47948 |
Copyright terms: Public domain | W3C validator |