MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgcd Structured version   Visualization version   GIF version

Theorem expgcd 16600
Description: Exponentiation distributes over GCD. sqgcd 16599 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
expgcd ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem expgcd
StepHypRef Expression
1 gcdnncl 16544 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
213adant3 1133 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℕ)
3 simp3 1139 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
42, 3nnexpcld 14284 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
54nncnd 12282 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ)
65mulridd 11278 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴 gcd 𝐵)↑𝑁))
7 nnexpcl 14115 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
873adant2 1132 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
98nnzd 12640 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
10 nnexpcl 14115 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
11103adant1 1131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
1211nnzd 12640 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
13 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
1413nnzd 12640 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
15 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
1615nnzd 12640 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
17 gcddvds 16540 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1814, 16, 17syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
19183adant3 1133 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2019simpld 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐴)
212nnzd 12640 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℤ)
22 simp1 1137 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℕ)
2322nnzd 12640 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
24 dvdsexpim 16592 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2521, 23, 3, 24syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2620, 25mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2719simprd 495 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐵)
28 simp2 1138 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
2928nnzd 12640 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
30 dvdsexpim 16592 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3121, 29, 3, 30syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3227, 31mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
33 gcddiv 16588 . . . . 5 ((((𝐴𝑁) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) ∧ (((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁) ∧ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
349, 12, 4, 26, 32, 33syl32anc 1380 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
35 nncn 12274 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
36353ad2ant1 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
372nncnd 12282 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℂ)
382nnne0d 12316 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ≠ 0)
3936, 37, 38, 3expdivd 14200 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
40 nncn 12274 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
41403ad2ant2 1135 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4241, 37, 38, 3expdivd 14200 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐵 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
4339, 42oveq12d 7449 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
44 gcddiv 16588 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4523, 29, 2, 19, 44syl31anc 1375 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4637, 38dividd 12041 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
4745, 46eqtr3d 2779 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
48 divgcdnn 16552 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
4922, 29, 48syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
5049nnnn0d 12587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0)
51 divgcdnnr 16553 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5228, 23, 51syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5352nnnn0d 12587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0)
54 nn0rppwr 16598 . . . . . 6 (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0 ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5550, 53, 3, 54syl3anc 1373 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5647, 55mpd 15 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1)
5734, 43, 563eqtr2d 2783 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1)
58 gcdnncl 16544 . . . . . 6 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℕ)
5958nncnd 12282 . . . . 5 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
608, 11, 59syl2anc 584 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
614nnne0d 12316 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)
62 ax-1cn 11213 . . . . 5 1 ∈ ℂ
63 divmul 11925 . . . . 5 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6462, 63mp3an2 1451 . . . 4 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6560, 5, 61, 64syl12anc 837 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6657, 65mpbid 232 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁)))
676, 66eqtr3d 2779 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cexp 14102  cdvds 16290   gcd cgcd 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532
This theorem is referenced by:  nn0expgcd  16601  dvdsexpnn  42368
  Copyright terms: Public domain W3C validator