MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgcd Structured version   Visualization version   GIF version

Theorem expgcd 16540
Description: Exponentiation distributes over GCD. sqgcd 16539 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
expgcd ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem expgcd
StepHypRef Expression
1 gcdnncl 16484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
213adant3 1132 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℕ)
3 simp3 1138 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
42, 3nnexpcld 14217 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
54nncnd 12209 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ)
65mulridd 11198 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴 gcd 𝐵)↑𝑁))
7 nnexpcl 14046 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
873adant2 1131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
98nnzd 12563 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
10 nnexpcl 14046 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
11103adant1 1130 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
1211nnzd 12563 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
13 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
1413nnzd 12563 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
15 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
1615nnzd 12563 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
17 gcddvds 16480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1814, 16, 17syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
19183adant3 1132 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2019simpld 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐴)
212nnzd 12563 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℤ)
22 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℕ)
2322nnzd 12563 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
24 dvdsexpim 16532 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2521, 23, 3, 24syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2620, 25mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2719simprd 495 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐵)
28 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
2928nnzd 12563 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
30 dvdsexpim 16532 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3121, 29, 3, 30syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3227, 31mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
33 gcddiv 16528 . . . . 5 ((((𝐴𝑁) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) ∧ (((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁) ∧ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
349, 12, 4, 26, 32, 33syl32anc 1380 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
35 nncn 12201 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
36353ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
372nncnd 12209 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℂ)
382nnne0d 12243 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ≠ 0)
3936, 37, 38, 3expdivd 14132 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
40 nncn 12201 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
41403ad2ant2 1134 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4241, 37, 38, 3expdivd 14132 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐵 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
4339, 42oveq12d 7408 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
44 gcddiv 16528 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4523, 29, 2, 19, 44syl31anc 1375 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4637, 38dividd 11963 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
4745, 46eqtr3d 2767 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
48 divgcdnn 16492 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
4922, 29, 48syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
5049nnnn0d 12510 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0)
51 divgcdnnr 16493 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5228, 23, 51syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5352nnnn0d 12510 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0)
54 nn0rppwr 16538 . . . . . 6 (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0 ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5550, 53, 3, 54syl3anc 1373 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5647, 55mpd 15 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1)
5734, 43, 563eqtr2d 2771 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1)
58 gcdnncl 16484 . . . . . 6 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℕ)
5958nncnd 12209 . . . . 5 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
608, 11, 59syl2anc 584 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
614nnne0d 12243 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)
62 ax-1cn 11133 . . . . 5 1 ∈ ℂ
63 divmul 11847 . . . . 5 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6462, 63mp3an2 1451 . . . 4 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6560, 5, 61, 64syl12anc 836 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6657, 65mpbid 232 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁)))
676, 66eqtr3d 2767 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cexp 14033  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  nn0expgcd  16541  dvdsexpnn  42328
  Copyright terms: Public domain W3C validator