MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgcd Structured version   Visualization version   GIF version

Theorem expgcd 16557
Description: Exponentiation distributes over GCD. sqgcd 16556 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
expgcd ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem expgcd
StepHypRef Expression
1 gcdnncl 16500 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
213adant3 1129 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℕ)
3 simp3 1135 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
42, 3nnexpcld 14255 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ)
54nncnd 12272 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ)
65mulridd 11270 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴 gcd 𝐵)↑𝑁))
7 nnexpcl 14086 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
873adant2 1128 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
98nnzd 12629 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
10 nnexpcl 14086 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
11103adant1 1127 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
1211nnzd 12629 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
13 simpl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
1413nnzd 12629 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
15 simpr 483 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
1615nnzd 12629 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
17 gcddvds 16496 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1814, 16, 17syl2anc 582 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
19183adant3 1129 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2019simpld 493 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐴)
212nnzd 12629 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℤ)
22 simp1 1133 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℕ)
2322nnzd 12629 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
24 dvdsexpim 16549 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2521, 23, 3, 24syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁)))
2620, 25mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁))
2719simprd 494 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∥ 𝐵)
28 simp2 1134 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
2928nnzd 12629 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
30 dvdsexpim 16549 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3121, 29, 3, 30syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁)))
3227, 31mpd 15 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))
33 gcddiv 16545 . . . . 5 ((((𝐴𝑁) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑𝑁) ∈ ℕ) ∧ (((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐴𝑁) ∧ ((𝐴 gcd 𝐵)↑𝑁) ∥ (𝐵𝑁))) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
349, 12, 4, 26, 32, 33syl32anc 1375 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
35 nncn 12264 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
36353ad2ant1 1130 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
372nncnd 12272 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ∈ ℂ)
382nnne0d 12306 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 gcd 𝐵) ≠ 0)
3936, 37, 38, 3expdivd 14171 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
40 nncn 12264 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
41403ad2ant2 1131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
4241, 37, 38, 3expdivd 14171 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐵 / (𝐴 gcd 𝐵))↑𝑁) = ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁)))
4339, 42oveq12d 7432 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = (((𝐴𝑁) / ((𝐴 gcd 𝐵)↑𝑁)) gcd ((𝐵𝑁) / ((𝐴 gcd 𝐵)↑𝑁))))
44 gcddiv 16545 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4523, 29, 2, 19, 44syl31anc 1370 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
4637, 38dividd 12031 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
4745, 46eqtr3d 2768 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
48 divgcdnn 16508 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
4922, 29, 48syl2anc 582 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
5049nnnn0d 12576 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0)
51 divgcdnnr 16509 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5228, 23, 51syl2anc 582 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
5352nnnn0d 12576 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0)
54 nn0rppwr 16555 . . . . . 6 (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ0 ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5550, 53, 3, 54syl3anc 1368 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1))
5647, 55mpd 15 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) gcd ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = 1)
5734, 43, 563eqtr2d 2772 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1)
58 gcdnncl 16500 . . . . . 6 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℕ)
5958nncnd 12272 . . . . 5 (((𝐴𝑁) ∈ ℕ ∧ (𝐵𝑁) ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
608, 11, 59syl2anc 582 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ)
614nnne0d 12306 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)
62 ax-1cn 11205 . . . . 5 1 ∈ ℂ
63 divmul 11915 . . . . 5 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6462, 63mp3an2 1446 . . . 4 ((((𝐴𝑁) gcd (𝐵𝑁)) ∈ ℂ ∧ (((𝐴 gcd 𝐵)↑𝑁) ∈ ℂ ∧ ((𝐴 gcd 𝐵)↑𝑁) ≠ 0)) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6560, 5, 61, 64syl12anc 835 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((((𝐴𝑁) gcd (𝐵𝑁)) / ((𝐴 gcd 𝐵)↑𝑁)) = 1 ↔ (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁))))
6657, 65mpbid 231 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 gcd 𝐵)↑𝑁) · 1) = ((𝐴𝑁) gcd (𝐵𝑁)))
676, 66eqtr3d 2768 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5144  (class class class)co 7414  cc 11145  0cc0 11147  1c1 11148   · cmul 11152   / cdiv 11910  cn 12256  0cn0 12516  cz 12602  cexp 14073  cdvds 16249   gcd cgcd 16487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9476  df-inf 9477  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-n0 12517  df-z 12603  df-uz 12867  df-rp 13021  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-dvds 16250  df-gcd 16488
This theorem is referenced by:  nn0expgcd  16558  dvdsexpnn  42057
  Copyright terms: Public domain W3C validator