Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvavsca | Structured version Visualization version GIF version |
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
dvafvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafvsca.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafvsca.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvafvsca.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafvsca.s | ⊢ · = ( ·𝑠 ‘𝑈) |
Ref | Expression |
---|---|
dvavsca | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑅 · 𝐹) = (𝑅‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvafvsca.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvafvsca.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | dvafvsca.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
5 | dvafvsca.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
6 | 1, 2, 3, 4, 5 | dvafvsca 39038 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))) |
7 | 6 | oveqd 7284 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅 · 𝐹) = (𝑅(𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))𝐹)) |
8 | fveq1 6765 | . . 3 ⊢ (𝑠 = 𝑅 → (𝑠‘𝑓) = (𝑅‘𝑓)) | |
9 | fveq2 6766 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑅‘𝑓) = (𝑅‘𝐹)) | |
10 | eqid 2738 | . . 3 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓)) | |
11 | fvex 6779 | . . 3 ⊢ (𝑅‘𝐹) ∈ V | |
12 | 8, 9, 10, 11 | ovmpo 7423 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅(𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (𝑠‘𝑓))𝐹) = (𝑅‘𝐹)) |
13 | 7, 12 | sylan9eq 2798 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑅 · 𝐹) = (𝑅‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 ·𝑠 cvsca 16976 LHypclh 38006 LTrncltrn 38123 TEndoctendo 38774 DVecAcdveca 39024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-struct 16858 df-slot 16893 df-ndx 16905 df-base 16923 df-plusg 16985 df-sca 16988 df-vsca 16989 df-dveca 39025 |
This theorem is referenced by: dvalveclem 39047 dialss 39068 dia1dim2 39084 |
Copyright terms: Public domain | W3C validator |