Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recncf | Structured version Visualization version GIF version |
Description: Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
recncf | ⊢ ℜ ∈ (ℂ–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ref 14554 | . 2 ⊢ ℜ:ℂ⟶ℝ | |
2 | recn2 15041 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℂ ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((ℜ‘𝑤) − (ℜ‘𝑥))) < 𝑦)) | |
3 | 2 | rgen2 3115 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℂ ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((ℜ‘𝑤) − (ℜ‘𝑥))) < 𝑦) |
4 | ssid 3897 | . . 3 ⊢ ℂ ⊆ ℂ | |
5 | ax-resscn 10665 | . . 3 ⊢ ℝ ⊆ ℂ | |
6 | elcncf2 23635 | . . 3 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℜ ∈ (ℂ–cn→ℝ) ↔ (ℜ:ℂ⟶ℝ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℂ ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((ℜ‘𝑤) − (ℜ‘𝑥))) < 𝑦)))) | |
7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ (ℜ ∈ (ℂ–cn→ℝ) ↔ (ℜ:ℂ⟶ℝ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℂ ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((ℜ‘𝑤) − (ℜ‘𝑥))) < 𝑦))) |
8 | 1, 3, 7 | mpbir2an 711 | 1 ⊢ ℜ ∈ (ℂ–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2113 ∀wral 3053 ∃wrex 3054 ⊆ wss 3841 class class class wbr 5027 ⟶wf 6329 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 ℝcr 10607 < clt 10746 − cmin 10941 ℝ+crp 12465 ℜcre 14539 abscabs 14676 –cn→ccncf 23621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-z 12056 df-uz 12318 df-rp 12466 df-seq 13454 df-exp 13515 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-cncf 23623 |
This theorem is referenced by: cnrehmeo 23698 cncombf 24403 cnmbf 24404 dvlip 24737 mbfresfi 35435 ftc1anclem8 35469 |
Copyright terms: Public domain | W3C validator |