| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssubd | Structured version Visualization version GIF version | ||
| Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| abssubd | ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | abssub 15293 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 − cmin 11405 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 df-im 15067 df-abs 15202 |
| This theorem is referenced by: rlimuni 15516 climuni 15518 2clim 15538 rlimrecl 15546 subcn2 15561 reccn2 15563 climcau 15637 caucvgrlem 15639 serf0 15647 mertenslem2 15851 xrsxmet 24698 elcncf2 24783 cnllycmp 24855 dvlip 25898 c1lip1 25902 dvfsumrlim2 25939 dvfsum2 25941 ftc1a 25944 aalioulem3 26242 ulmcaulem 26303 ulmcau 26304 ulmbdd 26307 ulmcn 26308 ulmdvlem1 26309 logcnlem4 26554 ssscongptld 26732 chordthmlem3 26744 chordthmlem4 26745 lgamucov 26948 ftalem2 26984 logfacrlim 27135 dchrisumlem3 27402 dchrisum0lem1b 27426 mulog2sumlem2 27446 pntrlog2bndlem3 27490 smcnlem 30626 constrrtcc 33725 iconstr 33756 qqhucn 33982 dnibndlem2 36467 dnibndlem6 36471 dnibndlem8 36473 dnibnd 36479 unbdqndv2lem1 36497 knoppndvlem10 36509 knoppndvlem15 36514 ftc1anclem8 37694 irrapxlem3 42812 irrapxlem5 42814 pell14qrgt0 42847 acongeq 42972 absimlere 45475 limcrecl 45627 islpcn 45637 lptre2pt 45638 0ellimcdiv 45647 limclner 45649 dvbdfbdioolem2 45927 ioodvbdlimc1lem1 45929 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 fourierdlem42 46147 ioorrnopnlem 46302 smflimlem4 46772 |
| Copyright terms: Public domain | W3C validator |