MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssubd Structured version   Visualization version   GIF version

Theorem abssubd 15345
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
abssubd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
abssubd (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))

Proof of Theorem abssubd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abssubd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 abssub 15218 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
41, 2, 3syl2anc 585 1 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6501  (class class class)co 7362  cc 11056  cmin 11392  abscabs 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-2 12223  df-cj 14991  df-re 14992  df-im 14993  df-abs 15128
This theorem is referenced by:  rlimuni  15439  climuni  15441  2clim  15461  rlimrecl  15469  subcn2  15484  reccn2  15486  climcau  15562  caucvgrlem  15564  serf0  15572  mertenslem2  15777  xrsxmet  24188  elcncf2  24269  cnllycmp  24335  dvlip  25373  c1lip1  25377  dvfsumrlim2  25412  dvfsum2  25414  ftc1a  25417  aalioulem3  25710  ulmcaulem  25769  ulmcau  25770  ulmbdd  25773  ulmcn  25774  ulmdvlem1  25775  logcnlem4  26016  ssscongptld  26188  chordthmlem3  26200  chordthmlem4  26201  lgamucov  26403  ftalem2  26439  logfacrlim  26588  dchrisumlem3  26855  dchrisum0lem1b  26879  mulog2sumlem2  26899  pntrlog2bndlem3  26943  smcnlem  29681  qqhucn  32613  dnibndlem2  34971  dnibndlem6  34975  dnibndlem8  34977  dnibnd  34983  unbdqndv2lem1  35001  knoppndvlem10  35013  knoppndvlem15  35018  ftc1anclem8  36187  irrapxlem3  41176  irrapxlem5  41178  pell14qrgt0  41211  acongeq  41336  absimlere  43789  limcrecl  43944  islpcn  43954  lptre2pt  43955  0ellimcdiv  43964  limclner  43966  dvbdfbdioolem2  44244  ioodvbdlimc1lem1  44246  ioodvbdlimc1lem2  44247  ioodvbdlimc2lem  44249  fourierdlem42  44464  ioorrnopnlem  44619  smflimlem4  45089
  Copyright terms: Public domain W3C validator