MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssubd Structured version   Visualization version   GIF version

Theorem abssubd 15381
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
abssubd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
abssubd (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))

Proof of Theorem abssubd
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abssubd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 abssub 15252 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
41, 2, 3syl2anc 584 1 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  cmin 11365  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-cj 15024  df-re 15025  df-im 15026  df-abs 15161
This theorem is referenced by:  rlimuni  15475  climuni  15477  2clim  15497  rlimrecl  15505  subcn2  15520  reccn2  15522  climcau  15596  caucvgrlem  15598  serf0  15606  mertenslem2  15810  xrsxmet  24714  elcncf2  24799  cnllycmp  24871  dvlip  25914  c1lip1  25918  dvfsumrlim2  25955  dvfsum2  25957  ftc1a  25960  aalioulem3  26258  ulmcaulem  26319  ulmcau  26320  ulmbdd  26323  ulmcn  26324  ulmdvlem1  26325  logcnlem4  26570  ssscongptld  26748  chordthmlem3  26760  chordthmlem4  26761  lgamucov  26964  ftalem2  27000  logfacrlim  27151  dchrisumlem3  27418  dchrisum0lem1b  27442  mulog2sumlem2  27462  pntrlog2bndlem3  27506  smcnlem  30659  constrrtcc  33704  iconstr  33735  qqhucn  33961  dnibndlem2  36455  dnibndlem6  36459  dnibndlem8  36461  dnibnd  36467  unbdqndv2lem1  36485  knoppndvlem10  36497  knoppndvlem15  36502  ftc1anclem8  37682  irrapxlem3  42800  irrapxlem5  42802  pell14qrgt0  42835  acongeq  42959  absimlere  45462  limcrecl  45614  islpcn  45624  lptre2pt  45625  0ellimcdiv  45634  limclner  45636  dvbdfbdioolem2  45914  ioodvbdlimc1lem1  45916  ioodvbdlimc1lem2  45917  ioodvbdlimc2lem  45919  fourierdlem42  46134  ioorrnopnlem  46289  smflimlem4  46759
  Copyright terms: Public domain W3C validator