Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abssubd | Structured version Visualization version GIF version |
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
abssubd | ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | abssub 14966 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 − cmin 11135 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 df-abs 14875 |
This theorem is referenced by: rlimuni 15187 climuni 15189 2clim 15209 rlimrecl 15217 subcn2 15232 reccn2 15234 climcau 15310 caucvgrlem 15312 serf0 15320 mertenslem2 15525 xrsxmet 23878 elcncf2 23959 cnllycmp 24025 dvlip 25062 c1lip1 25066 dvfsumrlim2 25101 dvfsum2 25103 ftc1a 25106 aalioulem3 25399 ulmcaulem 25458 ulmcau 25459 ulmbdd 25462 ulmcn 25463 ulmdvlem1 25464 logcnlem4 25705 ssscongptld 25877 chordthmlem3 25889 chordthmlem4 25890 lgamucov 26092 ftalem2 26128 logfacrlim 26277 dchrisumlem3 26544 dchrisum0lem1b 26568 mulog2sumlem2 26588 pntrlog2bndlem3 26632 smcnlem 28960 qqhucn 31842 dnibndlem2 34586 dnibndlem6 34590 dnibndlem8 34592 dnibnd 34598 unbdqndv2lem1 34616 knoppndvlem10 34628 knoppndvlem15 34633 ftc1anclem8 35784 irrapxlem3 40562 irrapxlem5 40564 pell14qrgt0 40597 acongeq 40721 absimlere 42910 limcrecl 43060 islpcn 43070 lptre2pt 43071 0ellimcdiv 43080 limclner 43082 dvbdfbdioolem2 43360 ioodvbdlimc1lem1 43362 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 fourierdlem42 43580 ioorrnopnlem 43735 smflimlem4 44196 |
Copyright terms: Public domain | W3C validator |