Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abssubd | Structured version Visualization version GIF version |
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
abssubd | ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | abssub 15038 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 − cmin 11205 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 df-abs 14947 |
This theorem is referenced by: rlimuni 15259 climuni 15261 2clim 15281 rlimrecl 15289 subcn2 15304 reccn2 15306 climcau 15382 caucvgrlem 15384 serf0 15392 mertenslem2 15597 xrsxmet 23972 elcncf2 24053 cnllycmp 24119 dvlip 25157 c1lip1 25161 dvfsumrlim2 25196 dvfsum2 25198 ftc1a 25201 aalioulem3 25494 ulmcaulem 25553 ulmcau 25554 ulmbdd 25557 ulmcn 25558 ulmdvlem1 25559 logcnlem4 25800 ssscongptld 25972 chordthmlem3 25984 chordthmlem4 25985 lgamucov 26187 ftalem2 26223 logfacrlim 26372 dchrisumlem3 26639 dchrisum0lem1b 26663 mulog2sumlem2 26683 pntrlog2bndlem3 26727 smcnlem 29059 qqhucn 31942 dnibndlem2 34659 dnibndlem6 34663 dnibndlem8 34665 dnibnd 34671 unbdqndv2lem1 34689 knoppndvlem10 34701 knoppndvlem15 34706 ftc1anclem8 35857 irrapxlem3 40646 irrapxlem5 40648 pell14qrgt0 40681 acongeq 40805 absimlere 43020 limcrecl 43170 islpcn 43180 lptre2pt 43181 0ellimcdiv 43190 limclner 43192 dvbdfbdioolem2 43470 ioodvbdlimc1lem1 43472 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 fourierdlem42 43690 ioorrnopnlem 43845 smflimlem4 44309 |
Copyright terms: Public domain | W3C validator |