| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssubd | Structured version Visualization version GIF version | ||
| Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| abssubd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| abssubd | ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abssubd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | abssub 15365 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 − cmin 11492 abscabs 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 df-cj 15138 df-re 15139 df-im 15140 df-abs 15275 |
| This theorem is referenced by: rlimuni 15586 climuni 15588 2clim 15608 rlimrecl 15616 subcn2 15631 reccn2 15633 climcau 15707 caucvgrlem 15709 serf0 15717 mertenslem2 15921 xrsxmet 24831 elcncf2 24916 cnllycmp 24988 dvlip 26032 c1lip1 26036 dvfsumrlim2 26073 dvfsum2 26075 ftc1a 26078 aalioulem3 26376 ulmcaulem 26437 ulmcau 26438 ulmbdd 26441 ulmcn 26442 ulmdvlem1 26443 logcnlem4 26687 ssscongptld 26865 chordthmlem3 26877 chordthmlem4 26878 lgamucov 27081 ftalem2 27117 logfacrlim 27268 dchrisumlem3 27535 dchrisum0lem1b 27559 mulog2sumlem2 27579 pntrlog2bndlem3 27623 smcnlem 30716 constrrtcc 33776 qqhucn 33993 dnibndlem2 36480 dnibndlem6 36484 dnibndlem8 36486 dnibnd 36492 unbdqndv2lem1 36510 knoppndvlem10 36522 knoppndvlem15 36527 ftc1anclem8 37707 irrapxlem3 42835 irrapxlem5 42837 pell14qrgt0 42870 acongeq 42995 absimlere 45490 limcrecl 45644 islpcn 45654 lptre2pt 45655 0ellimcdiv 45664 limclner 45666 dvbdfbdioolem2 45944 ioodvbdlimc1lem1 45946 ioodvbdlimc1lem2 45947 ioodvbdlimc2lem 45949 fourierdlem42 46164 ioorrnopnlem 46319 smflimlem4 46789 |
| Copyright terms: Public domain | W3C validator |