MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulc1cncf Structured version   Visualization version   GIF version

Theorem mulc1cncf 24814
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
Assertion
Ref Expression
mulc1cncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mulc1cncf
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 11112 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 mulc1cncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
31, 2fmptd 7052 . 2 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
4 simprr 772 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
5 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
6 simprl 770 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ ℂ)
7 mulcn2 15521 . . . . 5 ((𝑧 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
84, 5, 6, 7syl3anc 1373 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
9 fvoveq1 7376 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (abs‘(𝑣𝐴)) = (abs‘(𝐴𝐴)))
109breq1d 5105 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → ((abs‘(𝑣𝐴)) < 𝑡 ↔ (abs‘(𝐴𝐴)) < 𝑡))
1110anbi1d 631 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
12 oveq1 7360 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (𝑣 · 𝑢) = (𝐴 · 𝑢))
1312fvoveq1d 7375 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
1413breq1d 5105 . . . . . . . . . . . 12 (𝑣 = 𝐴 → ((abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
1511, 14imbi12d 344 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1615ralbidv 3152 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1716rspcv 3575 . . . . . . . . 9 (𝐴 ∈ ℂ → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1817ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
19 subid 11401 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
2019ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴𝐴) = 0)
2120abs00bd 15216 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) = 0)
22 simprll 778 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑡 ∈ ℝ+)
2322rpgt0d 12958 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 0 < 𝑡)
2421, 23eqbrtrd 5117 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) < 𝑡)
2524biantrurd 532 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘(𝑢𝑦)) < 𝑤 ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
26 simprr 772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑢 ∈ ℂ)
27 oveq2 7361 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
28 ovex 7386 . . . . . . . . . . . . . . . 16 (𝐴 · 𝑢) ∈ V
2927, 2, 28fvmpt 6934 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℂ → (𝐹𝑢) = (𝐴 · 𝑢))
3026, 29syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑢) = (𝐴 · 𝑢))
31 simplrl 776 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑦 ∈ ℂ)
32 oveq2 7361 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
33 ovex 7386 . . . . . . . . . . . . . . . 16 (𝐴 · 𝑦) ∈ V
3432, 2, 33fvmpt 6934 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝐹𝑦) = (𝐴 · 𝑦))
3531, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑦) = (𝐴 · 𝑦))
3630, 35oveq12d 7371 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((𝐹𝑢) − (𝐹𝑦)) = ((𝐴 · 𝑢) − (𝐴 · 𝑦)))
3736fveq2d 6830 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘((𝐹𝑢) − (𝐹𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
3837breq1d 5105 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
3925, 38imbi12d 344 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4039anassrs 467 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) ∧ 𝑢 ∈ ℂ) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4140ralbidva 3150 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4218, 41sylibrd 259 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4342anassrs 467 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4443reximdva 3142 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4544rexlimdva 3130 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → (∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
468, 45mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
4746ralrimivva 3172 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
48 ssid 3960 . . 3 ℂ ⊆ ℂ
49 elcncf2 24799 . . 3 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))))
5048, 48, 49mp2an 692 . 2 (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
513, 47, 50sylanbrc 583 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028   · cmul 11033   < clt 11168  cmin 11365  +crp 12911  abscabs 15159  cnccncf 24785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-cncf 24787
This theorem is referenced by:  divccncf  24815  sincn  26370  coscn  26371  logcn  26572  itgexpif  34573  mulc1cncfg  45571  dirkeritg  46084  dirkercncflem2  46086
  Copyright terms: Public domain W3C validator