MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcncf Structured version   Visualization version   GIF version

Theorem imcncf 24824
Description: Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
imcncf ℑ ∈ (ℂ–cn→ℝ)

Proof of Theorem imcncf
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imf 15020 . 2 ℑ:ℂ⟶ℝ
2 imcn2 15509 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((ℑ‘𝑤) − (ℑ‘𝑥))) < 𝑦))
32rgen2 3172 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((ℑ‘𝑤) − (ℑ‘𝑥))) < 𝑦)
4 ssid 3957 . . 3 ℂ ⊆ ℂ
5 ax-resscn 11063 . . 3 ℝ ⊆ ℂ
6 elcncf2 24811 . . 3 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℑ ∈ (ℂ–cn→ℝ) ↔ (ℑ:ℂ⟶ℝ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((ℑ‘𝑤) − (ℑ‘𝑥))) < 𝑦))))
74, 5, 6mp2an 692 . 2 (ℑ ∈ (ℂ–cn→ℝ) ↔ (ℑ:ℂ⟶ℝ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((ℑ‘𝑤) − (ℑ‘𝑥))) < 𝑦)))
81, 3, 7mpbir2an 711 1 ℑ ∈ (ℂ–cn→ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   < clt 11146  cmin 11344  +crp 12890  cim 15005  abscabs 15141  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-cncf 24799
This theorem is referenced by:  cnrehmeo  24879  cnrehmeoOLD  24880  cncombf  25587  cnmbf  25588  dvloglem  26585  mbfresfi  37712  ftc1anclem8  37746
  Copyright terms: Public domain W3C validator