Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0mat2pmat | Structured version Visualization version GIF version |
Description: The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.) |
Ref | Expression |
---|---|
idmatidpmat.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
idmatidpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
0mat2pmat.0 | ⊢ 0 = (0g‘(𝑁 Mat 𝑅)) |
0mat2pmat.z | ⊢ 𝑍 = (0g‘(𝑁 Mat 𝑃)) |
Ref | Expression |
---|---|
0mat2pmat | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘ 0 ) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idmatidpmat.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
2 | eqid 2739 | . . . 4 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2739 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | idmatidpmat.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2739 | . . . 4 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
6 | eqid 2739 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃)) | |
7 | 1, 2, 3, 4, 5, 6 | mat2pmatghm 21860 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((𝑁 Mat 𝑅) GrpHom (𝑁 Mat 𝑃))) |
8 | 7 | ancoms 458 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑇 ∈ ((𝑁 Mat 𝑅) GrpHom (𝑁 Mat 𝑃))) |
9 | 0mat2pmat.0 | . . 3 ⊢ 0 = (0g‘(𝑁 Mat 𝑅)) | |
10 | 0mat2pmat.z | . . 3 ⊢ 𝑍 = (0g‘(𝑁 Mat 𝑃)) | |
11 | 9, 10 | ghmid 18821 | . 2 ⊢ (𝑇 ∈ ((𝑁 Mat 𝑅) GrpHom (𝑁 Mat 𝑃)) → (𝑇‘ 0 ) = 𝑍) |
12 | 8, 11 | syl 17 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘ 0 ) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 Basecbs 16893 0gc0g 17131 GrpHom cghm 18812 Ringcrg 19764 Poly1cpl1 21329 Mat cmat 21535 matToPolyMat cmat2pmat 21834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-gsum 17134 df-prds 17139 df-pws 17141 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-subrg 20003 df-lmod 20106 df-lss 20175 df-sra 20415 df-rgmod 20416 df-dsmm 20920 df-frlm 20935 df-ascl 21043 df-psr 21093 df-mpl 21095 df-opsr 21097 df-psr1 21332 df-ply1 21334 df-mamu 21514 df-mat 21536 df-mat2pmat 21837 |
This theorem is referenced by: m2cpminv0 21891 pmatcollpwfi 21912 pmatcollpw3fi1lem1 21916 |
Copyright terms: Public domain | W3C validator |