Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zndvds0 | Structured version Visualization version GIF version |
Description: Special case of zndvds 20738 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
zndvds.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
zndvds0.3 | ⊢ 0 = (0g‘𝑌) |
Ref | Expression |
---|---|
zndvds0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12313 | . . 3 ⊢ 0 ∈ ℤ | |
2 | zncyg.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | zndvds.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
4 | 2, 3 | zndvds 20738 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
5 | 1, 4 | mp3an3 1448 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
6 | 2 | zncrng 20733 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝑌 ∈ CRing) |
8 | crngring 19776 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
9 | 3 | zrhrhm 20694 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌)) |
11 | rhmghm 19950 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
12 | zring0 20661 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
13 | zndvds0.3 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
14 | 12, 13 | ghmid 18821 | . . . 4 ⊢ (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 ) |
15 | 10, 11, 14 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘0) = 0 ) |
16 | 15 | eqeq2d 2750 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ (𝐿‘𝐴) = 0 )) |
17 | simpr 484 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
18 | 17 | zcnd 12409 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
19 | 18 | subid1d 11304 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴) |
20 | 19 | breq2d 5090 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁 ∥ 𝐴)) |
21 | 5, 16, 20 | 3bitr3d 308 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 0cc0 10855 − cmin 11188 ℕ0cn0 12216 ℤcz 12302 ∥ cdvds 15944 0gc0g 17131 GrpHom cghm 18812 Ringcrg 19764 CRingccrg 19765 RingHom crh 19937 ℤringczring 20651 ℤRHomczrh 20682 ℤ/nℤczn 20685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-ec 8474 df-qs 8478 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-seq 13703 df-dvds 15945 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-imas 17200 df-qus 17201 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-nsg 18734 df-eqg 18735 df-ghm 18813 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-rnghom 19940 df-subrg 20003 df-lmod 20106 df-lss 20175 df-lsp 20215 df-sra 20415 df-rgmod 20416 df-lidl 20417 df-rsp 20418 df-2idl 20484 df-cnfld 20579 df-zring 20652 df-zrh 20686 df-zn 20689 |
This theorem is referenced by: znfld 20749 znidomb 20750 znchr 20751 znrrg 20754 lgseisenlem3 26506 znfermltl 31541 |
Copyright terms: Public domain | W3C validator |