![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zndvds0 | Structured version Visualization version GIF version |
Description: Special case of zndvds 21324 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
zndvds.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
zndvds0.3 | ⊢ 0 = (0g‘𝑌) |
Ref | Expression |
---|---|
zndvds0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12573 | . . 3 ⊢ 0 ∈ ℤ | |
2 | zncyg.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | zndvds.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
4 | 2, 3 | zndvds 21324 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
5 | 1, 4 | mp3an3 1450 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
6 | 2 | zncrng 21319 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝑌 ∈ CRing) |
8 | crngring 20139 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
9 | 3 | zrhrhm 21280 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌)) |
11 | rhmghm 20375 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
12 | zring0 21229 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
13 | zndvds0.3 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
14 | 12, 13 | ghmid 19136 | . . . 4 ⊢ (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 ) |
15 | 10, 11, 14 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘0) = 0 ) |
16 | 15 | eqeq2d 2743 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ (𝐿‘𝐴) = 0 )) |
17 | simpr 485 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
18 | 17 | zcnd 12671 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
19 | 18 | subid1d 11564 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴) |
20 | 19 | breq2d 5160 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁 ∥ 𝐴)) |
21 | 5, 16, 20 | 3bitr3d 308 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 0cc0 11112 − cmin 11448 ℕ0cn0 12476 ℤcz 12562 ∥ cdvds 16201 0gc0g 17389 GrpHom cghm 19127 Ringcrg 20127 CRingccrg 20128 RingHom crh 20360 ℤringczring 21217 ℤRHomczrh 21268 ℤ/nℤczn 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-seq 13971 df-dvds 16202 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-0g 17391 df-imas 17458 df-qus 17459 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-nsg 19040 df-eqg 19041 df-ghm 19128 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-rhm 20363 df-subrng 20434 df-subrg 20459 df-lmod 20616 df-lss 20687 df-lsp 20727 df-sra 20930 df-rgmod 20931 df-lidl 20932 df-rsp 20933 df-2idl 21006 df-cnfld 21145 df-zring 21218 df-zrh 21272 df-zn 21275 |
This theorem is referenced by: znfld 21335 znidomb 21336 znchr 21337 znrrg 21340 lgseisenlem3 27104 znfermltl 32741 |
Copyright terms: Public domain | W3C validator |