|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > zndvds0 | Structured version Visualization version GIF version | ||
| Description: Special case of zndvds 21569 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | 
| zndvds.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) | 
| zndvds0.3 | ⊢ 0 = (0g‘𝑌) | 
| Ref | Expression | 
|---|---|
| zndvds0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0z 12626 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | zncyg.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 3 | zndvds.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 4 | 2, 3 | zndvds 21569 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) | 
| 5 | 1, 4 | mp3an3 1451 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) | 
| 6 | 2 | zncrng 21564 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) | 
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝑌 ∈ CRing) | 
| 8 | crngring 20243 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 9 | 3 | zrhrhm 21523 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) | 
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌)) | 
| 11 | rhmghm 20485 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
| 12 | zring0 21470 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
| 13 | zndvds0.3 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
| 14 | 12, 13 | ghmid 19241 | . . . 4 ⊢ (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 ) | 
| 15 | 10, 11, 14 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘0) = 0 ) | 
| 16 | 15 | eqeq2d 2747 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ (𝐿‘𝐴) = 0 )) | 
| 17 | simpr 484 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 18 | 17 | zcnd 12725 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) | 
| 19 | 18 | subid1d 11610 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴) | 
| 20 | 19 | breq2d 5154 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁 ∥ 𝐴)) | 
| 21 | 5, 16, 20 | 3bitr3d 309 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 0cc0 11156 − cmin 11493 ℕ0cn0 12528 ℤcz 12615 ∥ cdvds 16291 0gc0g 17485 GrpHom cghm 19231 Ringcrg 20231 CRingccrg 20232 RingHom crh 20470 ℤringczring 21458 ℤRHomczrh 21511 ℤ/nℤczn 21514 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 ax-mulf 11236 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-ec 8748 df-qs 8752 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-seq 14044 df-dvds 16292 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17487 df-imas 17554 df-qus 17555 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-nsg 19143 df-eqg 19144 df-ghm 19232 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-rsp 21220 df-2idl 21261 df-cnfld 21366 df-zring 21459 df-zrh 21515 df-zn 21518 | 
| This theorem is referenced by: znfld 21580 znidomb 21581 znchr 21582 znrrg 21585 lgseisenlem3 27422 znfermltl 33395 | 
| Copyright terms: Public domain | W3C validator |