Step | Hyp | Ref
| Expression |
1 | | rhmrcl1 20369 |
. . . . . . 7
β’ (πΉ β (π
RingHom π) β π
β Ring) |
2 | | eqid 2730 |
. . . . . . . 8
β’
(β€RHomβπ
) = (β€RHomβπ
) |
3 | 2 | zrhrhm 21282 |
. . . . . . 7
β’ (π
β Ring β
(β€RHomβπ
)
β (β€ring RingHom π
)) |
4 | 1, 3 | syl 17 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β (β€RHomβπ
) β (β€ring
RingHom π
)) |
5 | | zringbas 21226 |
. . . . . . 7
β’ β€ =
(Baseββ€ring) |
6 | | eqid 2730 |
. . . . . . 7
β’
(Baseβπ
) =
(Baseβπ
) |
7 | 5, 6 | rhmf 20378 |
. . . . . 6
β’
((β€RHomβπ
) β (β€ring RingHom
π
) β
(β€RHomβπ
):β€βΆ(Baseβπ
)) |
8 | | ffn 6718 |
. . . . . 6
β’
((β€RHomβπ
):β€βΆ(Baseβπ
) β
(β€RHomβπ
) Fn
β€) |
9 | 4, 7, 8 | 3syl 18 |
. . . . 5
β’ (πΉ β (π
RingHom π) β (β€RHomβπ
) Fn β€) |
10 | | eqid 2730 |
. . . . . . 7
β’
(chrβπ
) =
(chrβπ
) |
11 | 10 | chrcl 21299 |
. . . . . 6
β’ (π
β Ring β
(chrβπ
) β
β0) |
12 | | nn0z 12589 |
. . . . . 6
β’
((chrβπ
)
β β0 β (chrβπ
) β β€) |
13 | 1, 11, 12 | 3syl 18 |
. . . . 5
β’ (πΉ β (π
RingHom π) β (chrβπ
) β β€) |
14 | | fvco2 6989 |
. . . . 5
β’
(((β€RHomβπ
) Fn β€ β§ (chrβπ
) β β€) β ((πΉ β
(β€RHomβπ
))β(chrβπ
)) = (πΉβ((β€RHomβπ
)β(chrβπ
)))) |
15 | 9, 13, 14 | syl2anc 582 |
. . . 4
β’ (πΉ β (π
RingHom π) β ((πΉ β (β€RHomβπ
))β(chrβπ
)) = (πΉβ((β€RHomβπ
)β(chrβπ
)))) |
16 | | eqid 2730 |
. . . . . . 7
β’
(0gβπ
) = (0gβπ
) |
17 | 10, 2, 16 | chrid 21300 |
. . . . . 6
β’ (π
β Ring β
((β€RHomβπ
)β(chrβπ
)) = (0gβπ
)) |
18 | 1, 17 | syl 17 |
. . . . 5
β’ (πΉ β (π
RingHom π) β ((β€RHomβπ
)β(chrβπ
)) = (0gβπ
)) |
19 | 18 | fveq2d 6896 |
. . . 4
β’ (πΉ β (π
RingHom π) β (πΉβ((β€RHomβπ
)β(chrβπ
))) = (πΉβ(0gβπ
))) |
20 | 15, 19 | eqtrd 2770 |
. . 3
β’ (πΉ β (π
RingHom π) β ((πΉ β (β€RHomβπ
))β(chrβπ
)) = (πΉβ(0gβπ
))) |
21 | | rhmco 20394 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ (β€RHomβπ
) β (β€ring RingHom
π
)) β (πΉ β
(β€RHomβπ
))
β (β€ring RingHom π)) |
22 | 4, 21 | mpdan 683 |
. . . . 5
β’ (πΉ β (π
RingHom π) β (πΉ β (β€RHomβπ
)) β
(β€ring RingHom π)) |
23 | | rhmrcl2 20370 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β π β Ring) |
24 | | eqid 2730 |
. . . . . . 7
β’
(β€RHomβπ) = (β€RHomβπ) |
25 | 24 | zrhrhmb 21281 |
. . . . . 6
β’ (π β Ring β ((πΉ β
(β€RHomβπ
))
β (β€ring RingHom π) β (πΉ β (β€RHomβπ
)) = (β€RHomβπ))) |
26 | 23, 25 | syl 17 |
. . . . 5
β’ (πΉ β (π
RingHom π) β ((πΉ β (β€RHomβπ
)) β
(β€ring RingHom π) β (πΉ β (β€RHomβπ
)) = (β€RHomβπ))) |
27 | 22, 26 | mpbid 231 |
. . . 4
β’ (πΉ β (π
RingHom π) β (πΉ β (β€RHomβπ
)) = (β€RHomβπ)) |
28 | 27 | fveq1d 6894 |
. . 3
β’ (πΉ β (π
RingHom π) β ((πΉ β (β€RHomβπ
))β(chrβπ
)) = ((β€RHomβπ)β(chrβπ
))) |
29 | | rhmghm 20377 |
. . . 4
β’ (πΉ β (π
RingHom π) β πΉ β (π
GrpHom π)) |
30 | | eqid 2730 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
31 | 16, 30 | ghmid 19138 |
. . . 4
β’ (πΉ β (π
GrpHom π) β (πΉβ(0gβπ
)) = (0gβπ)) |
32 | 29, 31 | syl 17 |
. . 3
β’ (πΉ β (π
RingHom π) β (πΉβ(0gβπ
)) = (0gβπ)) |
33 | 20, 28, 32 | 3eqtr3d 2778 |
. 2
β’ (πΉ β (π
RingHom π) β ((β€RHomβπ)β(chrβπ
)) = (0gβπ)) |
34 | | eqid 2730 |
. . . 4
β’
(chrβπ) =
(chrβπ) |
35 | 34, 24, 30 | chrdvds 21301 |
. . 3
β’ ((π β Ring β§
(chrβπ
) β
β€) β ((chrβπ) β₯ (chrβπ
) β ((β€RHomβπ)β(chrβπ
)) = (0gβπ))) |
36 | 23, 13, 35 | syl2anc 582 |
. 2
β’ (πΉ β (π
RingHom π) β ((chrβπ) β₯ (chrβπ
) β ((β€RHomβπ)β(chrβπ
)) = (0gβπ))) |
37 | 33, 36 | mpbird 256 |
1
β’ (πΉ β (π
RingHom π) β (chrβπ) β₯ (chrβπ
)) |