MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrrhm Structured version   Visualization version   GIF version

Theorem chrrhm 21546
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
chrrhm (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅))

Proof of Theorem chrrhm
StepHypRef Expression
1 rhmrcl1 20476 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2737 . . . . . . . 8 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
32zrhrhm 21522 . . . . . . 7 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
5 zringbas 21464 . . . . . . 7 ℤ = (Base‘ℤring)
6 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
75, 6rhmf 20485 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
8 ffn 6736 . . . . . 6 ((ℤRHom‘𝑅):ℤ⟶(Base‘𝑅) → (ℤRHom‘𝑅) Fn ℤ)
94, 7, 83syl 18 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) Fn ℤ)
10 eqid 2737 . . . . . . 7 (chr‘𝑅) = (chr‘𝑅)
1110chrcl 21539 . . . . . 6 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
12 nn0z 12638 . . . . . 6 ((chr‘𝑅) ∈ ℕ0 → (chr‘𝑅) ∈ ℤ)
131, 11, 123syl 18 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑅) ∈ ℤ)
14 fvco2 7006 . . . . 5 (((ℤRHom‘𝑅) Fn ℤ ∧ (chr‘𝑅) ∈ ℤ) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))))
159, 13, 14syl2anc 584 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))))
16 eqid 2737 . . . . . . 7 (0g𝑅) = (0g𝑅)
1710, 2, 16chrid 21540 . . . . . 6 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g𝑅))
181, 17syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g𝑅))
1918fveq2d 6910 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))) = (𝐹‘(0g𝑅)))
2015, 19eqtrd 2777 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘(0g𝑅)))
21 rhmco 20501 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆))
224, 21mpdan 687 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆))
23 rhmrcl2 20477 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
24 eqid 2737 . . . . . . 7 (ℤRHom‘𝑆) = (ℤRHom‘𝑆)
2524zrhrhmb 21521 . . . . . 6 (𝑆 ∈ Ring → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)))
2623, 25syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)))
2722, 26mpbid 232 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))
2827fveq1d 6908 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = ((ℤRHom‘𝑆)‘(chr‘𝑅)))
29 rhmghm 20484 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
30 eqid 2737 . . . . 5 (0g𝑆) = (0g𝑆)
3116, 30ghmid 19240 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3229, 31syl 17 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3320, 28, 323eqtr3d 2785 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆))
34 eqid 2737 . . . 4 (chr‘𝑆) = (chr‘𝑆)
3534, 24, 30chrdvds 21541 . . 3 ((𝑆 ∈ Ring ∧ (chr‘𝑅) ∈ ℤ) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆)))
3623, 13, 35syl2anc 584 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆)))
3733, 36mpbird 257 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  0cn0 12526  cz 12613  cdvds 16290  Basecbs 17247  0gc0g 17484   GrpHom cghm 19230  Ringcrg 20230   RingHom crh 20469  ringczring 21457  ℤRHomczrh 21510  chrcchr 21512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-chr 21516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator