![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrrhm | Structured version Visualization version GIF version |
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
chrrhm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl1 20493 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
2 | eqid 2735 | . . . . . . . 8 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
3 | 2 | zrhrhm 21540 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) |
5 | zringbas 21482 | . . . . . . 7 ⊢ ℤ = (Base‘ℤring) | |
6 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 5, 6 | rhmf 20502 | . . . . . 6 ⊢ ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
8 | ffn 6737 | . . . . . 6 ⊢ ((ℤRHom‘𝑅):ℤ⟶(Base‘𝑅) → (ℤRHom‘𝑅) Fn ℤ) | |
9 | 4, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) Fn ℤ) |
10 | eqid 2735 | . . . . . . 7 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
11 | 10 | chrcl 21557 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0) |
12 | nn0z 12636 | . . . . . 6 ⊢ ((chr‘𝑅) ∈ ℕ0 → (chr‘𝑅) ∈ ℤ) | |
13 | 1, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑅) ∈ ℤ) |
14 | fvco2 7006 | . . . . 5 ⊢ (((ℤRHom‘𝑅) Fn ℤ ∧ (chr‘𝑅) ∈ ℤ) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅)))) | |
15 | 9, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅)))) |
16 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 10, 2, 16 | chrid 21558 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g‘𝑅)) |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g‘𝑅)) |
19 | 18 | fveq2d 6911 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))) = (𝐹‘(0g‘𝑅))) |
20 | 15, 19 | eqtrd 2775 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘(0g‘𝑅))) |
21 | rhmco 20518 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆)) | |
22 | 4, 21 | mpdan 687 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆)) |
23 | rhmrcl2 20494 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
24 | eqid 2735 | . . . . . . 7 ⊢ (ℤRHom‘𝑆) = (ℤRHom‘𝑆) | |
25 | 24 | zrhrhmb 21539 | . . . . . 6 ⊢ (𝑆 ∈ Ring → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))) |
27 | 22, 26 | mpbid 232 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)) |
28 | 27 | fveq1d 6909 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = ((ℤRHom‘𝑆)‘(chr‘𝑅))) |
29 | rhmghm 20501 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
30 | eqid 2735 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
31 | 16, 30 | ghmid 19253 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
32 | 29, 31 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
33 | 20, 28, 32 | 3eqtr3d 2783 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆)) |
34 | eqid 2735 | . . . 4 ⊢ (chr‘𝑆) = (chr‘𝑆) | |
35 | 34, 24, 30 | chrdvds 21559 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ (chr‘𝑅) ∈ ℤ) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆))) |
36 | 23, 13, 35 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g‘𝑆))) |
37 | 33, 36 | mpbird 257 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ∘ ccom 5693 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℕ0cn0 12524 ℤcz 12611 ∥ cdvds 16287 Basecbs 17245 0gc0g 17486 GrpHom cghm 19243 Ringcrg 20251 RingHom crh 20486 ℤringczring 21475 ℤRHomczrh 21528 chrcchr 21530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-od 19561 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-chr 21534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |