MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrrhm Structured version   Visualization version   GIF version

Theorem chrrhm 21569
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
chrrhm (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅))

Proof of Theorem chrrhm
StepHypRef Expression
1 rhmrcl1 20502 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2740 . . . . . . . 8 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
32zrhrhm 21545 . . . . . . 7 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
5 zringbas 21487 . . . . . . 7 ℤ = (Base‘ℤring)
6 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
75, 6rhmf 20511 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
8 ffn 6747 . . . . . 6 ((ℤRHom‘𝑅):ℤ⟶(Base‘𝑅) → (ℤRHom‘𝑅) Fn ℤ)
94, 7, 83syl 18 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (ℤRHom‘𝑅) Fn ℤ)
10 eqid 2740 . . . . . . 7 (chr‘𝑅) = (chr‘𝑅)
1110chrcl 21562 . . . . . 6 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
12 nn0z 12664 . . . . . 6 ((chr‘𝑅) ∈ ℕ0 → (chr‘𝑅) ∈ ℤ)
131, 11, 123syl 18 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑅) ∈ ℤ)
14 fvco2 7019 . . . . 5 (((ℤRHom‘𝑅) Fn ℤ ∧ (chr‘𝑅) ∈ ℤ) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))))
159, 13, 14syl2anc 583 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))))
16 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
1710, 2, 16chrid 21563 . . . . . 6 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g𝑅))
181, 17syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑅)‘(chr‘𝑅)) = (0g𝑅))
1918fveq2d 6924 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘((ℤRHom‘𝑅)‘(chr‘𝑅))) = (𝐹‘(0g𝑅)))
2015, 19eqtrd 2780 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = (𝐹‘(0g𝑅)))
21 rhmco 20527 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅)) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆))
224, 21mpdan 686 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆))
23 rhmrcl2 20503 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
24 eqid 2740 . . . . . . 7 (ℤRHom‘𝑆) = (ℤRHom‘𝑆)
2524zrhrhmb 21544 . . . . . 6 (𝑆 ∈ Ring → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)))
2623, 25syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅)) ∈ (ℤring RingHom 𝑆) ↔ (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆)))
2722, 26mpbid 232 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∘ (ℤRHom‘𝑅)) = (ℤRHom‘𝑆))
2827fveq1d 6922 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 ∘ (ℤRHom‘𝑅))‘(chr‘𝑅)) = ((ℤRHom‘𝑆)‘(chr‘𝑅)))
29 rhmghm 20510 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
30 eqid 2740 . . . . 5 (0g𝑆) = (0g𝑆)
3116, 30ghmid 19262 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3229, 31syl 17 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3320, 28, 323eqtr3d 2788 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆))
34 eqid 2740 . . . 4 (chr‘𝑆) = (chr‘𝑆)
3534, 24, 30chrdvds 21564 . . 3 ((𝑆 ∈ Ring ∧ (chr‘𝑅) ∈ ℤ) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆)))
3623, 13, 35syl2anc 583 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((chr‘𝑆) ∥ (chr‘𝑅) ↔ ((ℤRHom‘𝑆)‘(chr‘𝑅)) = (0g𝑆)))
3733, 36mpbird 257 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108   class class class wbr 5166  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  0cn0 12553  cz 12639  cdvds 16302  Basecbs 17258  0gc0g 17499   GrpHom cghm 19252  Ringcrg 20260   RingHom crh 20495  ringczring 21480  ℤRHomczrh 21533  chrcchr 21535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator