Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   GIF version

Theorem knoppndvlem17 36494
Description: Lemma for knoppndv 36500. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem17.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem17.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem17.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem17.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem17.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem17.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem17.m (𝜑𝑀 ∈ ℤ)
knoppndvlem17.n (𝜑𝑁 ∈ ℕ)
knoppndvlem17.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem17 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 36480 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 494 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
43recnd 11318 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
54abscld 15485 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem17.j . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 14213 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
10 2ne0 12397 . . . . . . . . . 10 2 ≠ 0
1110a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 12122 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
1312recnd 11318 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
14 1red 11291 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
15 knoppndvlem17.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1615nnred 12308 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
179, 16remulcld 11320 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
1817, 5remulcld 11320 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1918, 14resubcld 11718 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
20 0red 11293 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
21 0lt1 11812 . . . . . . . . . . . . . 14 0 < 1
2221a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
241, 15, 23knoppndvlem12 36489 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2524simprd 495 . . . . . . . . . . . . 13 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2620, 14, 19, 22, 25lttrd 11451 . . . . . . . . . . . 12 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2719, 26jca 511 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
28 gt0ne0 11755 . . . . . . . . . . 11 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
3014, 19, 29redivcld 12122 . . . . . . . . 9 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3114, 30resubcld 11718 . . . . . . . 8 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3231recnd 11318 . . . . . . 7 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℂ)
3313, 32mulcomd 11311 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)))
3433oveq1d 7463 . . . . 5 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)))
35 2rp 13062 . . . . . . . . . . 11 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
3715nnrpd 13097 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
3836, 37rpmulcld 13115 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ+)
396nn0zd 12665 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
4039znegcld 12749 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
4138, 40rpexpcld 14296 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ+)
4241rphalfcld 13111 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ+)
4342rpcnd 13101 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4442rpne0d 13104 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
4532, 13, 43, 44divassd 12105 . . . . 5 (𝜑 → (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))))
4613, 43, 44divcld 12070 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℂ)
4732, 46mulcomd 11311 . . . . . 6 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
487recnd 11318 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
4941rpcnd 13101 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
509recnd 11318 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
5141rpne0d 13104 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ≠ 0)
5248, 49, 50, 51, 11divcan7d 12098 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)))
5317recnd 11318 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
5438rpne0d 13104 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ≠ 0)
5553, 54, 39expnegd 14203 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
5655oveq2d 7464 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))))
57 1cnd 11285 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5853, 6expcld 14196 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
5920, 22gtned 11425 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
6053, 54, 39expne0d 14202 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
6148, 57, 58, 59, 60divdiv2d 12102 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))) = ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1))
6248, 58mulcld 11310 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) ∈ ℂ)
6362div1d 12062 . . . . . . . . . 10 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)))
6448, 58mulcomd 11311 . . . . . . . . . 10 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
6553, 54jca 511 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
665recnd 11318 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
671, 15, 23knoppndvlem13 36490 . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ 0)
684, 67absne0d 15496 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ≠ 0)
6966, 68jca 511 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
7065, 69, 393jca 1128 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
71 mulexpz 14153 . . . . . . . . . . . 12 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7372eqcomd 2746 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7463, 64, 733eqtrd 2784 . . . . . . . . 9 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7556, 61, 743eqtrd 2784 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7652, 75eqtrd 2780 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7776oveq1d 7463 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7847, 77eqtrd 2780 . . . . 5 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7934, 45, 783eqtrd 2784 . . . 4 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8079eqcomd 2746 . . 3 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)))
8112, 31remulcld 11320 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
82 knoppndvlem17.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
83 knoppndvlem17.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
84 knoppndvlem17.w . . . . . . 7 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
85 knoppndvlem17.b . . . . . . . . 9 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
8685a1i 11 . . . . . . . 8 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
87 knoppndvlem17.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8887peano2zd 12750 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
8915, 39, 88knoppndvlem1 36478 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
9086, 89eqeltrd 2844 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
912simprd 495 . . . . . . 7 (𝜑 → (abs‘𝐶) < 1)
9282, 83, 84, 90, 15, 3, 91knoppcld 36471 . . . . . 6 (𝜑 → (𝑊𝐵) ∈ ℂ)
93 knoppndvlem17.a . . . . . . . . 9 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
9493a1i 11 . . . . . . . 8 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9515, 39, 87knoppndvlem1 36478 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
9694, 95eqeltrd 2844 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9782, 83, 84, 96, 15, 3, 91knoppcld 36471 . . . . . 6 (𝜑 → (𝑊𝐴) ∈ ℂ)
9892, 97subcld 11647 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) ∈ ℂ)
9998abscld 15485 . . . 4 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) ∈ ℝ)
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 36492 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
10181, 99, 42, 100lediv1dd 13157 . . 3 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10280, 101eqbrtrd 5188 . 2 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10393, 85, 6, 87, 15knoppndvlem16 36493 . . . 4 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
104103eqcomd 2746 . . 3 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) = (𝐵𝐴))
105104oveq2d 7464 . 2 (𝜑 → ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
106102, 105breqtrd 5192 1 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  (,)cioo 13407  cfl 13841  cexp 14112  abscabs 15283  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ulm 26438
This theorem is referenced by:  knoppndvlem21  36498
  Copyright terms: Public domain W3C validator