Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   GIF version

Theorem knoppndvlem17 36489
Description: Lemma for knoppndv 36495. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem17.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem17.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem17.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem17.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem17.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem17.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem17.m (𝜑𝑀 ∈ ℤ)
knoppndvlem17.n (𝜑𝑁 ∈ ℕ)
knoppndvlem17.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem17 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 36475 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 494 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
43recnd 11178 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
54abscld 15381 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem17.j . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 14104 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 12236 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
10 2ne0 12266 . . . . . . . . . 10 2 ≠ 0
1110a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 11986 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
1312recnd 11178 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
14 1red 11151 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
15 knoppndvlem17.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1615nnred 12177 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
179, 16remulcld 11180 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
1817, 5remulcld 11180 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1918, 14resubcld 11582 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
20 0red 11153 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
21 0lt1 11676 . . . . . . . . . . . . . 14 0 < 1
2221a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
241, 15, 23knoppndvlem12 36484 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2524simprd 495 . . . . . . . . . . . . 13 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2620, 14, 19, 22, 25lttrd 11311 . . . . . . . . . . . 12 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2719, 26jca 511 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
28 gt0ne0 11619 . . . . . . . . . . 11 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
3014, 19, 29redivcld 11986 . . . . . . . . 9 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3114, 30resubcld 11582 . . . . . . . 8 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3231recnd 11178 . . . . . . 7 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℂ)
3313, 32mulcomd 11171 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)))
3433oveq1d 7384 . . . . 5 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)))
35 2rp 12932 . . . . . . . . . . 11 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
3715nnrpd 12969 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
3836, 37rpmulcld 12987 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ+)
396nn0zd 12531 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
4039znegcld 12616 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
4138, 40rpexpcld 14188 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ+)
4241rphalfcld 12983 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ+)
4342rpcnd 12973 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4442rpne0d 12976 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
4532, 13, 43, 44divassd 11969 . . . . 5 (𝜑 → (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))))
4613, 43, 44divcld 11934 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℂ)
4732, 46mulcomd 11171 . . . . . 6 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
487recnd 11178 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
4941rpcnd 12973 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
509recnd 11178 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
5141rpne0d 12976 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ≠ 0)
5248, 49, 50, 51, 11divcan7d 11962 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)))
5317recnd 11178 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
5438rpne0d 12976 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ≠ 0)
5553, 54, 39expnegd 14094 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
5655oveq2d 7385 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))))
57 1cnd 11145 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5853, 6expcld 14087 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
5920, 22gtned 11285 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
6053, 54, 39expne0d 14093 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
6148, 57, 58, 59, 60divdiv2d 11966 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))) = ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1))
6248, 58mulcld 11170 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) ∈ ℂ)
6362div1d 11926 . . . . . . . . . 10 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)))
6448, 58mulcomd 11171 . . . . . . . . . 10 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
6553, 54jca 511 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
665recnd 11178 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
671, 15, 23knoppndvlem13 36485 . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ 0)
684, 67absne0d 15392 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ≠ 0)
6966, 68jca 511 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
7065, 69, 393jca 1128 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
71 mulexpz 14043 . . . . . . . . . . . 12 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7372eqcomd 2735 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7463, 64, 733eqtrd 2768 . . . . . . . . 9 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7556, 61, 743eqtrd 2768 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7652, 75eqtrd 2764 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7776oveq1d 7384 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7847, 77eqtrd 2764 . . . . 5 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7934, 45, 783eqtrd 2768 . . . 4 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8079eqcomd 2735 . . 3 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)))
8112, 31remulcld 11180 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
82 knoppndvlem17.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
83 knoppndvlem17.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
84 knoppndvlem17.w . . . . . . 7 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
85 knoppndvlem17.b . . . . . . . . 9 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
8685a1i 11 . . . . . . . 8 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
87 knoppndvlem17.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8887peano2zd 12617 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
8915, 39, 88knoppndvlem1 36473 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
9086, 89eqeltrd 2828 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
912simprd 495 . . . . . . 7 (𝜑 → (abs‘𝐶) < 1)
9282, 83, 84, 90, 15, 3, 91knoppcld 36466 . . . . . 6 (𝜑 → (𝑊𝐵) ∈ ℂ)
93 knoppndvlem17.a . . . . . . . . 9 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
9493a1i 11 . . . . . . . 8 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9515, 39, 87knoppndvlem1 36473 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
9694, 95eqeltrd 2828 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9782, 83, 84, 96, 15, 3, 91knoppcld 36466 . . . . . 6 (𝜑 → (𝑊𝐴) ∈ ℂ)
9892, 97subcld 11509 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) ∈ ℂ)
9998abscld 15381 . . . 4 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) ∈ ℝ)
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 36487 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
10181, 99, 42, 100lediv1dd 13029 . . 3 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10280, 101eqbrtrd 5124 . 2 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10393, 85, 6, 87, 15knoppndvlem16 36488 . . . 4 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
104103eqcomd 2735 . . 3 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) = (𝐵𝐴))
105104oveq2d 7385 . 2 (𝜑 → ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
106102, 105breqtrd 5128 1 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  +crp 12927  (,)cioo 13282  cfl 13728  cexp 14002  abscabs 15176  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ulm 26262
This theorem is referenced by:  knoppndvlem21  36493
  Copyright terms: Public domain W3C validator