Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   GIF version

Theorem knoppndvlem17 36530
Description: Lemma for knoppndv 36536. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem17.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem17.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem17.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem17.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem17.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem17.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem17.m (𝜑𝑀 ∈ ℤ)
knoppndvlem17.n (𝜑𝑁 ∈ ℕ)
knoppndvlem17.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem17 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 36516 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 494 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
43recnd 11290 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
54abscld 15476 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem17.j . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 14204 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 12341 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
10 2ne0 12371 . . . . . . . . . 10 2 ≠ 0
1110a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 12096 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
1312recnd 11290 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
14 1red 11263 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
15 knoppndvlem17.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1615nnred 12282 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
179, 16remulcld 11292 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
1817, 5remulcld 11292 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1918, 14resubcld 11692 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
20 0red 11265 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
21 0lt1 11786 . . . . . . . . . . . . . 14 0 < 1
2221a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
241, 15, 23knoppndvlem12 36525 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2524simprd 495 . . . . . . . . . . . . 13 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2620, 14, 19, 22, 25lttrd 11423 . . . . . . . . . . . 12 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2719, 26jca 511 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
28 gt0ne0 11729 . . . . . . . . . . 11 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
3014, 19, 29redivcld 12096 . . . . . . . . 9 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3114, 30resubcld 11692 . . . . . . . 8 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3231recnd 11290 . . . . . . 7 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℂ)
3313, 32mulcomd 11283 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)))
3433oveq1d 7447 . . . . 5 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)))
35 2rp 13040 . . . . . . . . . . 11 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
3715nnrpd 13076 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
3836, 37rpmulcld 13094 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ+)
396nn0zd 12641 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
4039znegcld 12726 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
4138, 40rpexpcld 14287 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ+)
4241rphalfcld 13090 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ+)
4342rpcnd 13080 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4442rpne0d 13083 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
4532, 13, 43, 44divassd 12079 . . . . 5 (𝜑 → (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))))
4613, 43, 44divcld 12044 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℂ)
4732, 46mulcomd 11283 . . . . . 6 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
487recnd 11290 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
4941rpcnd 13080 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
509recnd 11290 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
5141rpne0d 13083 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ≠ 0)
5248, 49, 50, 51, 11divcan7d 12072 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)))
5317recnd 11290 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
5438rpne0d 13083 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ≠ 0)
5553, 54, 39expnegd 14194 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
5655oveq2d 7448 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))))
57 1cnd 11257 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5853, 6expcld 14187 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
5920, 22gtned 11397 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
6053, 54, 39expne0d 14193 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
6148, 57, 58, 59, 60divdiv2d 12076 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))) = ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1))
6248, 58mulcld 11282 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) ∈ ℂ)
6362div1d 12036 . . . . . . . . . 10 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)))
6448, 58mulcomd 11283 . . . . . . . . . 10 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
6553, 54jca 511 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
665recnd 11290 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
671, 15, 23knoppndvlem13 36526 . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ 0)
684, 67absne0d 15487 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ≠ 0)
6966, 68jca 511 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
7065, 69, 393jca 1128 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
71 mulexpz 14144 . . . . . . . . . . . 12 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7372eqcomd 2742 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7463, 64, 733eqtrd 2780 . . . . . . . . 9 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7556, 61, 743eqtrd 2780 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7652, 75eqtrd 2776 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7776oveq1d 7447 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7847, 77eqtrd 2776 . . . . 5 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7934, 45, 783eqtrd 2780 . . . 4 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8079eqcomd 2742 . . 3 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)))
8112, 31remulcld 11292 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
82 knoppndvlem17.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
83 knoppndvlem17.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
84 knoppndvlem17.w . . . . . . 7 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
85 knoppndvlem17.b . . . . . . . . 9 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
8685a1i 11 . . . . . . . 8 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
87 knoppndvlem17.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8887peano2zd 12727 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
8915, 39, 88knoppndvlem1 36514 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
9086, 89eqeltrd 2840 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
912simprd 495 . . . . . . 7 (𝜑 → (abs‘𝐶) < 1)
9282, 83, 84, 90, 15, 3, 91knoppcld 36507 . . . . . 6 (𝜑 → (𝑊𝐵) ∈ ℂ)
93 knoppndvlem17.a . . . . . . . . 9 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
9493a1i 11 . . . . . . . 8 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9515, 39, 87knoppndvlem1 36514 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
9694, 95eqeltrd 2840 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9782, 83, 84, 96, 15, 3, 91knoppcld 36507 . . . . . 6 (𝜑 → (𝑊𝐴) ∈ ℂ)
9892, 97subcld 11621 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) ∈ ℂ)
9998abscld 15476 . . . 4 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) ∈ ℝ)
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 36528 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
10181, 99, 42, 100lediv1dd 13136 . . 3 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10280, 101eqbrtrd 5164 . 2 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10393, 85, 6, 87, 15knoppndvlem16 36529 . . . 4 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
104103eqcomd 2742 . . 3 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) = (𝐵𝐴))
105104oveq2d 7448 . 2 (𝜑 → ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
106102, 105breqtrd 5168 1 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  cz 12615  +crp 13035  (,)cioo 13388  cfl 13831  cexp 14103  abscabs 15274  Σcsu 15723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-dvds 16292  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cn 23236  df-cnp 23237  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-ulm 26421
This theorem is referenced by:  knoppndvlem21  36534
  Copyright terms: Public domain W3C validator