Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   GIF version

Theorem knoppndvlem17 34635
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem17.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem17.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem17.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem17.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem17.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem17.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem17.m (𝜑𝑀 ∈ ℤ)
knoppndvlem17.n (𝜑𝑁 ∈ ℕ)
knoppndvlem17.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem17 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 34621 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 494 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
43recnd 10934 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
54abscld 15076 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem17.j . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 13809 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
10 2ne0 12007 . . . . . . . . . 10 2 ≠ 0
1110a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 11733 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
1312recnd 10934 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
14 1red 10907 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
15 knoppndvlem17.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1615nnred 11918 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
179, 16remulcld 10936 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
1817, 5remulcld 10936 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1918, 14resubcld 11333 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
20 0red 10909 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
21 0lt1 11427 . . . . . . . . . . . . . 14 0 < 1
2221a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
241, 15, 23knoppndvlem12 34630 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2524simprd 495 . . . . . . . . . . . . 13 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2620, 14, 19, 22, 25lttrd 11066 . . . . . . . . . . . 12 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2719, 26jca 511 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
28 gt0ne0 11370 . . . . . . . . . . 11 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
3014, 19, 29redivcld 11733 . . . . . . . . 9 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3114, 30resubcld 11333 . . . . . . . 8 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3231recnd 10934 . . . . . . 7 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℂ)
3313, 32mulcomd 10927 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)))
3433oveq1d 7270 . . . . 5 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)))
35 2rp 12664 . . . . . . . . . . 11 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
3715nnrpd 12699 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
3836, 37rpmulcld 12717 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ+)
396nn0zd 12353 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
4039znegcld 12357 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
4138, 40rpexpcld 13890 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ+)
4241rphalfcld 12713 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ+)
4342rpcnd 12703 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4442rpne0d 12706 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
4532, 13, 43, 44divassd 11716 . . . . 5 (𝜑 → (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))))
4613, 43, 44divcld 11681 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℂ)
4732, 46mulcomd 10927 . . . . . 6 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
487recnd 10934 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
4941rpcnd 12703 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
509recnd 10934 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
5141rpne0d 12706 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ≠ 0)
5248, 49, 50, 51, 11divcan7d 11709 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)))
5317recnd 10934 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
5438rpne0d 12706 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ≠ 0)
5553, 54, 39expnegd 13799 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
5655oveq2d 7271 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))))
57 1cnd 10901 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5853, 6expcld 13792 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
5920, 22gtned 11040 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
6053, 54, 39expne0d 13798 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
6148, 57, 58, 59, 60divdiv2d 11713 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))) = ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1))
6248, 58mulcld 10926 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) ∈ ℂ)
6362div1d 11673 . . . . . . . . . 10 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)))
6448, 58mulcomd 10927 . . . . . . . . . 10 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
6553, 54jca 511 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
665recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
671, 15, 23knoppndvlem13 34631 . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ 0)
684, 67absne0d 15087 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ≠ 0)
6966, 68jca 511 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
7065, 69, 393jca 1126 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
71 mulexpz 13751 . . . . . . . . . . . 12 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7372eqcomd 2744 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7463, 64, 733eqtrd 2782 . . . . . . . . 9 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7556, 61, 743eqtrd 2782 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7652, 75eqtrd 2778 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7776oveq1d 7270 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7847, 77eqtrd 2778 . . . . 5 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7934, 45, 783eqtrd 2782 . . . 4 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8079eqcomd 2744 . . 3 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)))
8112, 31remulcld 10936 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
82 knoppndvlem17.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
83 knoppndvlem17.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
84 knoppndvlem17.w . . . . . . 7 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
85 knoppndvlem17.b . . . . . . . . 9 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
8685a1i 11 . . . . . . . 8 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
87 knoppndvlem17.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8887peano2zd 12358 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
8915, 39, 88knoppndvlem1 34619 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
9086, 89eqeltrd 2839 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
912simprd 495 . . . . . . 7 (𝜑 → (abs‘𝐶) < 1)
9282, 83, 84, 90, 15, 3, 91knoppcld 34612 . . . . . 6 (𝜑 → (𝑊𝐵) ∈ ℂ)
93 knoppndvlem17.a . . . . . . . . 9 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
9493a1i 11 . . . . . . . 8 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9515, 39, 87knoppndvlem1 34619 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
9694, 95eqeltrd 2839 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9782, 83, 84, 96, 15, 3, 91knoppcld 34612 . . . . . 6 (𝜑 → (𝑊𝐴) ∈ ℂ)
9892, 97subcld 11262 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) ∈ ℂ)
9998abscld 15076 . . . 4 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) ∈ ℝ)
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 34633 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
10181, 99, 42, 100lediv1dd 12759 . . 3 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10280, 101eqbrtrd 5092 . 2 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10393, 85, 6, 87, 15knoppndvlem16 34634 . . . 4 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
104103eqcomd 2744 . . 3 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) = (𝐵𝐴))
105104oveq2d 7271 . 2 (𝜑 → ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
106102, 105breqtrd 5096 1 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  (,)cioo 13008  cfl 13438  cexp 13710  abscabs 14873  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ulm 25441
This theorem is referenced by:  knoppndvlem21  34639
  Copyright terms: Public domain W3C validator